987 resultados para Tuberculosis-Investigación


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The significance of G-quadruplexes and the helicases that resolve G4 structures in prokaryotes is poorly understood. The Mycobacterium tuberculosis genome is GC-rich and contains >10,000 sequences that have the potential to form G4 structures. In Escherichia coli, RecQ helicase unwinds G4 structures. However, RecQ is absent in M. tuberculosis, and the helicase that participates in G4 resolution in M. tuberculosis is obscure. Here, we show that M. tuberculosis DinG (MtDinG) exhibits high affinity for ssDNA and ssDNA translocation with a 5' -> 3' polarity. Interestingly, MtDinG unwinds overhangs, flap structures, and forked duplexes but fails to unwind linear duplex DNA. Our data with DNase I footprinting provide mechanistic insights and suggest that MtDinG is a 5' -> 3' polarity helicase. Notably, in contrast to E. coli DinG, MtDinG catalyzes unwinding of replication fork and Holliday junction structures. Strikingly, we find that MtDinG resolves intermolecular G4 structures. These data suggest that MtDinG is a multifunctional structure-specific helicase that unwinds model structures of DNA replication, repair, and recombination as well as G4 structures. We finally demonstrate that promoter sequences of M. tuberculosis PE_PGRS2, mce1R, and moeB1 genes contain G4 structures, implying that G4 structures may regulate gene expression in M. tuberculosis. We discuss these data and implicate targeting G4 structures and DinG helicase in M. tuberculosis could be a novel therapeutic strategy for culminating the infection with this pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental charge density analysis of an anti-TB drug ethionamide was carried out from high resolution X-ray diffraction at 100 K to understand its charge density distribution and electrostatic properties. The experimental results were validated from periodic theoretical charge density calculations performed using CRYSTAL09 at the B3LYP/6-31G** level of theory. The electron density rho(bcp)(r) and the Laplacian of electron density del(2)(rho bcp)(r) of the molecule calculated from both the methods display the charge density distribution of the ethionamide molecule in the crystal field. The electrostatic potential map shows a large electropositive region around the pyridine ring and a large electronegative region at the vicinity of the thiol atom. The calculated experimental dipole moment is 10.6D, which is higher than the value calculated from theory (8.2D). The topological properties of C-H center dot center dot center dot S, N-H center dot center dot center dot N and N-H center dot center dot center dot S hydrogen bonds were calculated, revealing their strength. The charge density analysis of the ethionamide molecule determined from both the experiment and theory gives the topological and electrostatic properties of the molecule, which allows to precisely understand the nature of intra and intermolecular interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: mIHF belongs to a subfamily of proteins, distinct from E. coli IHF. Results: Functionally important amino acids of mIHF and the mechanism(s) underlying DNA binding, DNA bending, and site-specific recombination are distinct from that of E. coli IHF. Conclusion: mIHF functions could contribute beyond nucleoid compaction. Significance: Because mIHF is essential for growth, the molecular mechanisms identified here can be exploited in drug screening efforts. The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ihfA and ihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better understanding of pathogenesis and to accelerate the process of drug target discovery. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FtsE is one of the earliest cell division proteins that assembles along with FtsX at the mid-cell site during cell division in Escherichia coli. Both these proteins are highly conserved across diverse bacterial genera and are predicted to constitute an ABC transporter type complex, in which FtsE is predicted to bind ATP and hydrolyse it, and FtsX is predicted to be an integral membrane protein. We had earlier reported that the MtFtsE of the human pathogen, Mycobacterium tuberculosis, binds ATP and interacts with MtFtsX on the cell membrane of M. tuberculosis and E. coli. In this study, we demonstrate that MtFtsE is an ATPase, the active form of which is a dimer, wherein the participating monomers are held together by non-covalent interactions, with the Cys84 of each monomer present at the dimer interface. Under oxidising environment, the dimer gets stabilised by the formation of Cys84-Cys84 disulphide bond. While the recombinant MtFtsE forms a dimer on the membrane of E. coli, the native MtFtsE seems to be in a different conformation in the M. tuberculosis membrane. Although disulphide bridges were not observed on the cytoplasmic side (reducing environment) of the membrane, the two participating monomers could be isolated as dimers held together by non-covalent interactions. Taken together, these findings show that MtFtsE is an ATPase in the non-covalent dimer form, with the Cys84 of each monomer present in the reduced form at the dimer interface, without participating in the dimerisation or the catalytic activity of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and force on RecA filament formation and stability. Using magnetic tweezers, at single molecular level, we found that Mycobacterium tuberculosis (Mt) RecX could catalyze stepwise de-polymerization of preformed MtRecA filament in the presence of ATP hydrolysis at low forces (<7 pN). However, applying larger forces antagonized the inhibitory effects of MtRecX, and a partially de-polymerized MtRecA filament could repolymerize in the presence of MtRecX, which cannot be explained by previous models. Theoretical analysis of force-dependent conformational free energies of naked ssDNA and RecA nucleoprotein filament suggests that mechanical force stabilizes RecA filament, which provides a possible mechanism for the observation. As the antagonizing effect of force on the inhibitory function of RecX takes place in a physiological range; these findings broadly suggest a potential mechanosensitive regulation during homologous recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the `switch' residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M smegmatis and E. coli, which exhibit concerted internal molecular mobility. The interspecies variability in the plasticity of the two mycobacterial proteins is particularly surprising as they have similar sequence and 3D structure. Details of the interactions of ligands with the protein, characterized in the structures reported here, could be useful for design of inhibitors against M. tuberculosis RecA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis is continuing as a problem of mankind. With evolution, MDR and XDR forms of tuberculosis have emerged from drug sensitive strain. MDR and XDR strains are resistant to most of the antibiotics, making the management more difficult. BCG vaccine is not providing complete protection against tuberculosis. Therefore new infections are spreading at a tremendous rate. At the present moment there is experimental evidence to believe that Vitamin A and Vitamin D has anti-mycobacterial property. It is in this context, we have hypothesized a host based approach using the above vitamins that can cause possible prevention and cure of tuberculosis with minimal chance of resistance or toxicity. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional regulation enables adaptation in bacteria. Typically, only a few transcriptional events are well understood, leaving many others unidentified. The recent genome-wide identification of transcription factor binding sites in Mycobacterium tuberculosis has changed this by deciphering a molecular road-map of transcriptional control, indicating active events and their immediate downstream effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis genes Rv0844c/Rv0845 encoding the NarL response regulator and NarS histidine kinase are hypothesized to constitute a two-component system involved in the regulation of nitrate metabolism. However, there is no experimental evidence to support this. In this study, we established M. tuberculosis NarL/NarS as a functional two-component system and identified His(241) and Asp(61) as conserved phosphorylation sites in NarS and NarL, respectively. Transcriptional profiling between M. tuberculosis H37Rv and Delta narL mutant strain during exponential growth in broth cultures with or without nitrate defined an similar to 30-gene NarL regulon that exhibited significant overlap with DevR-regulated genes, thereby implicating a role for the DevR response regulator in the regulation of nitrate metabolism. Notably, expression analysis of a subset of genes common to NarL and DevR regulons in M. tuberculosis Delta devR, Delta devS Delta dosT, and Delta narL mutant strains revealed that in response to nitrite produced during aerobic nitrate metabolism, the DevRS/DosT regulatory system plays a primary role that is augmented by NarL. Specifically, NarL itself was unable to bind to the narK2, acg, and Rv3130c promoters in phosphorylated or unphosphorylated form; however, its interaction with DevR similar to P resulted in cooperative binding, thereby enabling co-regulation of these genes. These findings support the role of physiologically derived nitrite as a metabolic signal in mycobacteria. We propose NarL-DevR binding, possibly as a heterodimer, as a novel mechanism for co-regulation of gene expression by the DevRS/DosT and NarL/NarS regulatory systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe inhibition of Mycobacterium tuberculosis topoisomerase I (MttopoI), an essential mycobacterial enzyme, by two related compounds, imipramine and norclomipramine, of which imipramine is clinically used as an antidepressant. These molecules showed growth inhibition of both Mycobacterium smegmatis and Mycobacterium tuberculosis cells. The mechanism of action of these two molecules was investigated by analyzing the individual steps of the topoisomerase I (topoI) reaction cycle. The compounds stimulated cleavage, thereby perturbing the cleavage-religation equilibrium. Consequently, these molecules inhibited the growth of the cells overexpressing topoI at a low MIC. Docking of the molecules on the MttopoI model suggested that they bind near the metal binding site of the enzyme. The DNA relaxation activity of the metal binding mutants harboring mutations in the DxDxE motif was differentially affected by the molecules, suggesting that the metal coordinating residues contribute to the interaction of the enzyme with the drug. Taken together, the results highlight the potential of these small molecules, which poison the Mycobacterium tuberculosis and Mycobacterium smegmatis topoisomerase I, as leads for the development of improved molecules to combat mycobacterial infections. Moreover, targeting metal coordination in topoisomerases might be a general strategy to develop new lead molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rifampicin (Rif) is a first line drug used for tuberculosis treatment. However, the emergence of drug resistant strains has necessitated synthesis and testing of newer analogs of Rif. Mycobacterium smegmatis is often used as a surrogate for M. tuberculosis. However, the presence of an ADP ribosyltransferase (Arr) in M. smegmatis inactivates Rif, rendering it impractical for screening of Rif analogs or other compounds when used in conjunction with them (Rif/Rif analogs). Rifampicin is also used in studying the role of various DNA repair enzymes by analyzing mutations in RpoB (a subunit of RNA polymerase) causing Rif resistance. These analyses use high concentrations of Rif when M. smegmatis is used as model. Here, we have generated M. smegmatis strains by deleting arr (Delta arr). The M. smegmatis Delta arr strains show minimum inhibitory concentration (MIC) for Rif which is similar to that for M. tuberculosis. The MICs for isoniazid, pyrazinamide, ethambutol, ciprofloxacin and streptomycin were essentially unaltered for M. smegmatis Delta arr. The growth profiles and mutation spectrum of Delta arr and, Delta arr combined with Delta udgB (udgB encodes a DNA repair enzyme that excises uracil) strains were similar to their counterparts wild-type for arr. However, the mutation spectrum of Delta fpg Delta arr strain differed somewhat from that of the Delta fpg strain (fpg encodes a DNA repair enzyme that excises 8-oxo-G). Our studies suggest M. smegmatis Delta arr strain as an ideal model system in drug testing and mutation spectrum determination in DNA repair studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The heterotrimeric M. tuberculosis RecBCD complex, or each of its individual subunits, remains uncharacterized. Results: MtRecD exists as a homodimer in solution, catalyzes ssDNA-dependent ATP hydrolysis, unwinding of DNA replication/recombination intermediates, and interacts with RecA. Conclusion: MtRecD possesses strong 5 3- and weak 3 5-helicase activities. Significance: These findings provide insights into the mechanism underlying DSB repair and homologous recombination in mycobacteria. The annotated whole-genome sequence of Mycobacterium tuberculosis revealed the presence of a putative recD gene; however, the biochemical characteristics of its encoded protein product (MtRecD) remain largely unknown. Here, we show that MtRecD exists in solution as a stable homodimer. Protein-DNA binding assays revealed that MtRecD binds efficiently to single-stranded DNA and linear duplexes containing 5 overhangs relative to the 3 overhangs but not to blunt-ended duplex. Furthermore, MtRecD bound more robustly to a variety of Y-shaped DNA structures having 18-nucleotide overhangs but not to a similar substrate containing 5-nucleotide overhangs. MtRecD formed more salt-tolerant complexes with Y-shaped structures compared with linear duplex having 3 overhangs. The intrinsic ATPase activity of MtRecD was stimulated by single-stranded DNA. Site-specific mutagenesis of Lys-179 in motif I abolished the ATPase activity of MtRecD. Interestingly, although MtRecD-catalyzed unwinding showed a markedly higher preference for duplex substrates with 5 overhangs, it could also catalyze significant unwinding of substrates containing 3 overhangs. These results support the notion that MtRecD is a bipolar helicase with strong 5 3 and weak 3 5 unwinding activities. The extent of unwinding of Y-shaped DNA structures was approximate to 3-fold lower compared with duplexes with 5 overhangs. Notably, direct interaction between MtRecD and its cognate RecA led to inhibition of DNA strand exchange promoted by RecA. Altogether, these studies provide the first detailed characterization of MtRecD and present important insights into the type of DNA structure the enzyme is likely to act upon during the processes of DNA repair or homologous recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection. (C) 2015 The Authors. Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annotated whole-genome sequence of Mycobacterium tuberculosis indicated that Rv1388 (Mtihf) likely encodes a putative 20 kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or organization of mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF-duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg170, Arg171, and Arg173, which might be involved in DNA binding, and a conserved proline (P150) in the tight turn. The phenotypic sensitivity of Escherichia coli Delta ihfA and Delta ihfB strains to UV and methylmethanesulfonate could be complemented with the wild-type Mtihf, but not its alleles bearing mutations in the DNA-binding residues. Protein DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, bind with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF alpha beta. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes compaction of DNA into nucleoid-like or higher-order filamentous structures. We hence propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.