980 resultados para Triton X-114
Resumo:
Monoclonal antibodies (mabs) were generated against whole sonicated Neospora caninum tachyzoites as immunogen. Initial ELISA screening of the reactivity of hybridoma culture supernatants using the same antigen and antigen treated with sodium periodate prior to antibody binding resulted in the identification of 8 supernatants with reactivity against putative carbohydrate epitopes. Following immunoblotting, mab6D12 (IgG1), binding a 52/48-kDa doublet, and mab6C6 (IgM), binding a 190/180-kDa doublet, were selected for further studies. Immunofluorescence of tachyzoite-infected cultures localized the corresponding epitopes not to the surface, but to interior epitopes at the apical part of N. caninum tachyzoites. During in vitro tachyzoite to bradyzoite stage conversion, mab6C6 labeling translocated toward the cyst periphery, while for mab6D12 no changes in localization were noted. Upon extraction of tachyzoites with the nonionic detergent Triton-X-100, the 52-kDa band recognized by mab6D12 was present exclusively in the insoluble, cytoskeletal fraction of both N. caninum and Toxoplasma gondii tachyzoites. Tandem mass spectrometry analysis identified this protein as N. caninum beta tubulin. The 48-kDa band labeled by mab6D12 was a Vero cell protein contamination. The protein(s) reacting with mab6C6 could not be conclusively identified by mass spectrometry. Immunofluorescence consistently failed to label T. gondii tachyzoites, indicating that beta tubulin in T. gondii and N. caninum could be differentially modified or that the reactive epitope in T. gondii is masked. Immunogold TEM of isolated apical cytoskeletal preparations and dual immunofluorescence with antibody to tubulin confirmed that mab6D12 binds to the anterior part of apical complex-associated microtubules. The sodium periodate sensitivity of the beta tubulin associated epitope was confirmed by immunoblotting and ELISA, and treatment of N. caninum cytoskeletal proteins with sialidase prior to mab6D12 labeling resulted in a profound loss of antibody binding, suggesting that mab6D12 reacts with sialylated beta tubulin.
Resumo:
Background HIV-prevalence, as well as incidence of zoonotic parasitic diseases like cystic echinococcosis, has increased in the Kyrgyz Republic due to fundamental socio-economic changes after the breakdown of the Soviet Union. The possible impact on morbidity and mortality caused by Toxoplasma gondii infection in congenital toxoplasmosis or as an opportunistic infection in the emerging AIDS pandemic has not been reported from Kyrgyzstan. Methodology/Principal Findings We screened 1,061 rural and 899 urban people to determine the seroprevalence of T. gondii infection in 2 representative but epidemiologically distinct populations in Kyrgyzstan. The rural population was from a typical agricultural district where sheep husbandry is a major occupation. The urban population was selected in collaboration with several diagnostic laboratories in Bishkek, the largest city in Kyrgyzstan. We designed a questionnaire that was used on all rural subjects so a risk-factor analysis could be undertaken. The samples from the urban population were anonymous and only data with regard to age and gender was available. Estimates of putative cases of congenital and AIDS-related toxoplasmosis in the whole country were made from the results of the serology. Specific antibodies (IgG) against Triton X-100 extracted antigens of T. gondii tachyzoites from in vitro cultures were determined by ELISA. Overall seroprevalence of infection with T. gondii in people living in rural vs. urban areas was 6.2% (95%CI: 4.8–7.8) (adjusted seroprevalence based on census figures 5.1%, 95% CI 3.9–6.5), and 19.0% (95%CI: 16.5–21.7) (adjusted 16.4%, 95% CI 14.1–19.3), respectively, without significant gender-specific differences. The seroprevalence increased with age. Independently low social status increased the risk of Toxoplasma seropositivity while increasing numbers of sheep owned decreased the risk of seropositivity. Water supply, consumption of unpasteurized milk products or undercooked meat, as well as cat ownership, had no significant influence on the risk for seropositivity. Conclusions We present a first seroprevalence analysis for human T. gondii infection in the Kyrgyz Republic. Based on these data we estimate that 173 (95% CI 136–216) Kyrgyz children will be born annually to mothers who seroconverted to toxoplasmosis during pregnancy. In addition, between 350 and 1,000 HIV-infected persons are currently estimated to be seropositive for toxoplasmosis. Taken together, this suggests a substantial impact of congenital and AIDS-related symptomatic toxoplasmosis on morbidity and mortality in Kyrgyzstan.
Resumo:
The mitochondrial carnitine palmitoyltransferase (CPT) system is composed of two proteins, CPT-I and CPT-II, involved in the transport of fatty acids into the mitochondrial matrix to undergo $\beta$-oxidation. CPT-I is located outside the inner membrane and CPT-II is located on the inner aspect of the inner membrane. The CPT proteins are distinct with different molecular weights and activities. The malonyl-CoA sensitivity of CPT-I has been proposed as a regulatory step in $\beta$-oxidation. Using the neonatal rat cardiac myocyte, assays were designed to discriminate between these activities in situ using digitonin and Triton X-100. With this methodology, we are able to determine the involvement of the IGF-I pathway in the insulin-mediated increase in CPT activities. Concentrations of digitonin up to 25 $\mu$M fail to release citrate synthase from the mitochondrial matrix or alter the malonyl-CoA sensitivity of CPT-I. If the mitochondrial matrix was exposed, malonyl-CoA insensitive CPT-II would reduce malonyl-CoA sensitivity. In contrast to digitonin, Triton X-100 (0.15%) releases citrate synthase from the matrix and exposes CPT-II. CPT-II activity is confirmed by the absence of malonyl-CoA sensitivity. To examine the effects of various agents on the expression and/or activity of CPT, it is necessary to use serum-free medium to eliminate mitogenic effects of serum proteins. Comparison of different media to optimize CPT activity and cell viability resulted in the decision to use Dulbecco's Modified Eagle medium supplemented with transferrin. In three established models of cardiac hypertrophy using the neonatal rat cardiac myocyte there is a significant increase in CPT-I and CPT-II activity in the treated cells. Analogous to the situation seen in the hypertrophy model, insulin also significantly increases the activity of the mitochondrial proteins CPT-I, CPT-II and cytochrome oxidase with a coinciding increase the expression of CPT-II and cytochrome oxidase mRNA. The removal of serum increases the I$\sb{50}$ (concentration of inhibitor that halves enzyme activity) of CPT-I for malonyl-CoA by four-fold. Incubation with insulin returns I$\sb{50}$ values to serum levels. Incubation with insulin significantly increases malonyl-CoA and ATP levels in the cells with a resulting reduction in palmitate oxidation. Once malonyl-CoA inhibition of CPT-I is removed by permeabilizing the cells, insulin significantly increases the oxidation of palmitoyl-CoA in a manner which parallels the increase in CPT-I activity. Interestingly, CPT-II activity increases significantly only at the tissue culture concentration (1.7 $\mu$M) of insulin suggesting that the IGF-I pathway may be involved. Supporting a role for the IGF-I pathway in the insulin-induced increase in CPT activity is the significant increase in the synthesis of both cellular and mitochondrial proteins as well as increased synthesis of CPT-II. Consistent with an IGF-mediated pathway for the effect of insulin, IGF-I (10 ng/ml) significantly increases the activities of both CPT-I and -II. An IGF-I analogue which inhibits the autophosphorylation of the IGF-I receptor blunts the insulin-mediated increase in CPT-I and -II activity by greater than 70% and virtually eliminates the IGF-I response by greater than 90%. This is the first study to demonstrate the involvement of the IGF-I pathway in the regulation of mitochondrial protein expression, e.g. CPT. ^
Resumo:
The significance of specific lipids for proton pumping by the bacterial rhodopsin proteorhodopsin (pR) was studied. To this end, it was examined whether pR preferentially binds certain lipids and whether molecular properties of the lipid environment affect the photocycle. pR's photocycle was followed by microsecond flash-photolysis in the visible spectral range. It was fastest in phosphatidylcholine liposomes (soy bean lipid), intermediate in 3-[(3-cholamidopropyl) dimethylammonio] propanesulfonate (CHAPS): 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bicelles and in Triton X-100, and slowest when pR was solubilized in CHAPS. In bicelles with different lipid compositions, the nature of the head groups, the unsaturation level and the fatty acid chain length had small effects on the photocycle. The specific affinity of pR for lipids of the expression host Escherichia coli was investigated by an optimized method of lipid isolation from purified membrane protein using two different concentrations of the detergent N-dodecyl-β-d-maltoside (DDM). We found that 11 lipids were copurified per pR molecule at 0.1% DDM, whereas essentially all lipids were stripped off from pR by 1% DDM. The relative amounts of copurified phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin did not correlate with the molar percentages normally present in E. coli cells. The results indicate a predominance of phosphatidylethanolamine species in the lipid annulus around recombinant pR that are less polar than the dominant species in the cell membrane of the expression host E. coli.
Resumo:
Phosphatidylserine synthase catalyzes the committed step in the synthesis of the major lipid of Escherichia coli, phosphatidylethanolamine, and may be involved in regulating the balance of the zwitterionic and anionic phospholipids in the membrane. Unlike the other enzymes involved in the biosynthesis of phospholipids in E. coli, phosphatidylserine synthase is not membrane associated but seems to have a high affinity for the ribosomal fraction of cells broken by various methods. Investigations on the enzyme in cell free extracts using glycerol gradient centrifugation revealed that the binding of the synthase to ribosomes may be prevented by the presence of highly basic compounds such as spermidine and by the presence of detergent-lipid substrate micelles under assay conditions. Thus phosphatidylserine synthase may not be ribosome associated under physiological conditions but associated with its membrane bound substrate (Louie and Dowhan (1980) J. Biol. Chem. 255, 1124).^ In addition homogeneous enzyme shows many of the properties of a membrane associated protein. It binds nonionic detergent such as Triton X-100, which is also required during purification of the enzyme. Optimal catalytic activity is also dependent on micelle or surface bound substrate. Phosphatidylserine synthase has been synthesized in vitro using a coupled transcription-translation system dependent on the presence of the cloned structural gene. The translation product was found to preferentially associate with the ribosomal fraction even in the presence of added E. coli membranes. Preferential membrane binding could be induced if the membranes were supplemented with the lipid substrate CDP-diacylglycerol. Similar effects were obtained with the acidic lipids phosphatidylglycerol and cardiolipin. On the other hand the zwitterionic lipid phosphatidylethanolamine and the lipid product phosphatidylserine did not cause any detectable membrane association. These results are consistent with the enzyme recognizing membrane bound substrate (Carman and Dowhan (1979) J. Biol. Chem. 254, 8391) and with the lipid charge influencing membrane interaction.^ Phosphatidylserine synthase is at a branch point in lipid metabolism, which may determine the distribution of the zwitterionic and anionic phospholipids in the membrane. The results obtained here indicate phosphatidylserine synthase may play a significant role in membrane lipid biosynthesis by maintaining charge balance of the E. coli membrane. In determining the localization of phosphatidylserine synthase in vitro one may have a better understanding of its function and control in vivo and may also have a better understanding of its role in membrane assembly.^
Resumo:
The p21-activated kinase 5 (PAK5) is a serine/threonine protein kinase associated with the group 2 subfamily of PAKs. Although our understanding about PAK5 is very limited, it is receiving increasing interest due to its tissue specific expression pattern and important signaling properties. PAK5 is highly expressed in brain. Its overexpression induces neurite outgrowth in neuroblastoma cells and promotes survival in fibroblasts. ^ The serine/threonine protein kinase Raf-1 is an essential mediator of Ras-dependent signaling that controls the ERK/MAPK pathway. In contrast to PAK5, Raf-1 has been the subject of intensive investigation. However due to the complexity of its activation mechanism, the biological inputs controlling Raf-1 activation are not fully understood. ^ PAKs 1-3 are the known kinases responsible for phosphorylation of Raf-1 on serine 338, which is a crucial phosphorylation site for Raf-1 activation. However, dominant negative versions of these kinases do not block EGF-induced Raf-1 activation, indicating that other kinases may regulate the phosphorylation of Raf-1 on serine 338. ^ This thesis work was initiated to test whether the group 2 PAKs 4, 5 and 6 are responsible for EGF-induced Raf-1 activation. We found that PAK5, and to a lesser extent PAK4, can activate Raf-1 in cells. Our studies thereafter focused on PAK5. With the progress of our study we found that PAK5 does not significantly stimulate serine 338 phosphorylation of Triton X-100 soluble Raf-1. PAK5, however, constitutively and specifically associates with Raf-1 and targets it to a Triton X-100 insoluble, mitochondrial compartment, where PAK5 phosphorylates serine 338 of Raf-1. We further demonstrated that endogenous PAK5 and Raf-1 colocalize in Hela cells at the mitochondrial outer membrane. In addition, we found that the mitochondria-targeting of PAK5 is determined by its C-terminal kinase domain plus the upstream proximal region, and facilitated by the N-terminal p21 binding domain. We also demonstrated that Rho GTPases Cdc42 and RhoD associate with and regulate the subcellular localization of PAK5. Taken together, this work suggests that the mitochondria-targeting of PAK5 may link Ras and Rho GTPase-mediated signaling pathways, and sheds light on aspects of PAK5 signaling that may be important for regulating neuronal homeostasis. ^
Resumo:
Analysis for micro-molar concentrations of nitrate and nitrite, nitrite, phosphate, silicate and ammonia was undertaken on a SEAL Analytical UK Ltd, AA3 segmented flow autoanalyser following methods described by Kirkwood (1996). Samples were drawn from Niskin bottles on the CTD into 15ml polycarbonate centrifuge tubes and kept refrigerated at approximately 4oC until analysis, which generally commenced within 30 minutes. Overall 23 runs with 597 samples were analysed. This is a total of 502 CTD samples, 69 underway samples and 26 from other sources. An artificial seawater matrix (ASW) of 40g/litre sodium chloride was used as the inter-sample wash and standard matrix. The nutrient free status of this solution was checked by running Ocean Scientific International (OSI) low nutrient seawater (LNS) on every run. A single set of mixed standards were made up by diluting 5mM solutions made from weighed dried salts in 1litre of ASW into plastic 250ml volumetric flasks that had been cleaned by washing in MilliQ water (MQ). Data processing was undertaken using SEAL Analytical UK Ltd proprietary software (AACE 6.07) and was performed within a few hours of the run being finished. The sample time was 60 seconds and the wash time was 30 seconds. The lines were washed daily with wash solutions specific for each chemistry, but comprised of MQ, MQ and SDS, MQ and Triton-X, or MQ and Brij-35. Three times during the cruise the phosphate and silicate channels were washed with a weak sodium hypochlorite solution.
Resumo:
We have conducted an integrated study of ice-rafted debris (IRD) and oxygen isotopes (measured on Cibicides, Globigerina bulloides, and Neogloboquadrina pachyderma, using identical samples). We used samples from the early Late Pliocene Gauss Chron from ODP Site 114-704 on the Meteor Rise in the subantarctic South Atlantic. During the early Gauss Chron, the oxygen isotopic ratios are generally up to 0.5?-0.6? less than their respective Holocene values. The lowest values in this record can accommodate a warming of about 2.5°C or a sea-level rise of about 50 m, but not both, and probably result from some warming and a small reduction in global ice volume. Starting with isotope stage MG2 [ 3.23 Ma on the Berggren et al. ( 1985) time scale; 3.38 on the Shackleton et al. ( 1995b) time scale] oxygen-isotopic values generally increase (and oscillate about a Holocene mean). The first significant IRD appears at the same time. There is a subsequent increase in IRD amounts upsection. In order to reach the site, this material must have been transported by large, tabular icebergs derived from Antarctic ice shelves or ice tongues, similar to occasional, large modern icebergs. This combined record suggests strongly that the Antarctic ice sheet was essentially intact; some warming at the drill site is indicated, but not a major reduction in ice-volume on Antarctica.
Resumo:
Results from a study of surfactants (SAS) in the sea surface microlayer (SML) and underlying water (ULW) at different locations in the Baltic Sea. The total SAS concentrations were measured using phase-sensitive alternative current voltammetry with hanging mercury drop electrode (HMDE) in unfiltered samples. The concentrations of SAS were expressed as the equivalent concentration of nonanionic surfactants Triton-X-100. The enrichment factors (EF) of SAS were calculated as the ratio of concentration in SML to the corresponding ULW samples.
Resumo:
The contraction of the actomyosin cytoskeleton, which is produced by the sliding of myosin II along actin filaments, drives important cellular activities such as cytokinesis and cell migration. To explain the contraction velocities observed in such physiological processes, we have studied the contraction of intact cytoskeletons of Dictyostelium discoideum cells after removing the plasma membrane using Triton X-100. The technique developed in this work allows for the quantitative measurement of contraction rates of individual cytoskeletons. The relationship of the contraction rates with forces was analyzed using three different myosins with different in vitro sliding velocities. The cytoskeletons containing these myosins were always contractile and the contraction rate was correlated with the sliding velocity of the myosins. However, the values of the contraction rate were two to three orders of magnitude slower than expected from the in vitro sliding velocities of the myosins, presumably due to internal and external resistive forces. The contraction process also depended on actin cross-linking proteins. The lack of α-actinin increased the contraction rate 2-fold and reduced the capacity of the cytoskeleton to retain internal materials, while the lack of filamin resulted in the ATP-dependent disruption of the cytoskeleton. Interestingly, the myosin-dependent contraction rate of intact contractile rings is also reportedly much slower than the in vitro sliding velocity of myosin, and is similar to the contraction rates of cytoskeletons (different by only 2–3 fold), suggesting that the contraction of intact cells and cytoskeletons is limited by common mechanisms.
Resumo:
Nonpathogenic, resident bacteria participate in the pathogenesis of inflammation in the small intestine, but the molecular messages produced by such bacteria are unknown. Inflammatory responses involve the recruitment of specific leukocyte subsets. We, therefore, hypothesized that butyrate, a normal bacterial metabolite, may modulate chemokine secretion by epithelial cells, by amplifying their response to proinflammatory signals. We studied the expression of the chemokine, macrophage inflammatory protein-2 (MIP-2) by the rat small intestinal epithelial cell line, IEC-6. Cells were stimulated with lipopolysaccharide or with interleukin 1β (IL-1β) and incubated with sodium butyrate. Acetylation of histones was examined in Triton X acetic acid–urea gels by PAGE. Unstimulated IEC-6 cells did not secrete MIP-2. However, lipopolysaccharide and IL-1β induced MIP-2 expression. Butyrate enhanced MIP-2 secretion both in lipopolysaccharide-stimulated and IL-1β-stimulated enterocytes; but butyrate alone did not induce MIP-2 expression. Butyrate increased the acetylation of histones extracted from the nuclei of IEC-6 cells. Furthermore, acetylation of histones (induced by trichostatin A, a specific inhibitor of histone deacetylase) enhanced MIP-2 expression by cells stimulated with IL-1β. In conclusion, trichostatin A reproduced the effects of butyrate on MIP-2 secretion. Butyrate, therefore, increases MIP-2 secretion in stimulated cells by increasing histone acetylation. We speculate that butyrate carries information from bacteria to epithelial cells. Epithelial cells transduce this signal through histone deacetylase, modulating the secretion of chemokines.
Resumo:
The molecular and functional characterization of a 125-kDa Ca2+-extractable protein of the Triton X-100–insoluble fraction of Dictyostelium cells identified a new type of a gelsolin-related molecule. In addition to its five gelsolin segments, this gelsolin-related protein of 125 kDa (GRP125) reveals a number of unique domains, two of which are predicted to form coiled-coil regions. Another distinct attribute of GRP125 concerns the lack of sequence elements known to be essential for characteristic activities of gelsolin-like proteins, i.e. the severing, capping, or nucleation of actin filaments. The subcellular distribution of GRP125 to vesicular compartments suggests an activity of GRP125 different from actin-binding, gelsolin-related proteins. GRP125 expression is tightly regulated and peaks at the transition to the multicellular pseudoplasmodial stage of Dictyostelium development. GRP125 was found indispensable for slug phototaxis, because slugs fail to correctly readjust their orientation in the absence of GRP125. Analysis of the GRP125-deficient mutant showed that GRP125 is required for coupling photodetection to the locomotory machinery of slugs. We propose that GRP125 is essential in the natural environment for the propagation of Dictyostelium spores. We also present evidence for further representatives of the GRP125 type in Dictyostelium, as well as in heterologous cells from lower to higher eukaryotes.
Resumo:
Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin–Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0°C, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5–10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy.
Resumo:
Myo2p is a yeast class V myosin that functions in membrane trafficking. To investigate the function of the carboxyl-terminal-tail domain of Myo2p, we have overexpressed this domain behind the regulatable GAL1 promoter (MYO2DN). Overexpression of the tail domain of Myo2p results in a dominant–negative phenotype that is phenotypically similar to a temperature-sensitive allele of myo2, myo2–66. The tail domain of Myo2p is sufficient for localization at low- expression levels and causes mislocalization of the endogenous Myo2p from sites of polarized cell growth. Subcellular fractionation of polarized, mechanically lysed yeast cells reveals that Myo2p is present predominantly in a 100,000 × g pellet. The Myo2p in this pellet is not solubilized by Mg++-ATP or Triton X-100, but is solubilized by high salt. Tail overexpression does not disrupt this fractionation pattern, nor do mutations in sec4, sec3, sec9, cdc42, or myo2. These results show that overexpression of the tail domain of Myo2p does not compete with the endogenous Myo2p for assembly into a pelletable structure, but does compete with the endogenous Myo2p for a factor that is necessary for localization to the bud tip.
Resumo:
Myelin sheets originate from distinct areas at the oligodendrocyte (OLG) plasma membrane and, as opposed to the latter, myelin membranes are relatively enriched in glycosphingolipids and cholesterol. The OLG plasma membrane can therefore be considered to consist of different membrane domains, as in polarized cells; the myelin sheet is reminiscent of an apical membrane domain and the OLG plasma membrane resembles the basolateral membrane. To reveal the potentially polarized membrane nature of OLG, the trafficking and sorting of two typical markers for apical and basolateral membranes, the viral proteins influenza virus–hemagglutinin (HA) and vesicular stomatitis virus–G protein (VSVG), respectively, were examined. We demonstrate that in OLG, HA and VSVG are differently sorted, which presumably occurs upon their trafficking through the Golgi. HA can be recovered in a Triton X-100-insoluble fraction, indicating an apical raft type of trafficking, whereas VSVG was only present in a Triton X-100-soluble fraction, consistent with its basolateral sorting. Hence, both an apical and a basolateral sorting mechanism appear to operate in OLG. Surprisingly, however, VSVG was found within the myelin sheets surrounding the cells, whereas HA was excluded from this domain. Therefore, despite its raft-like transport, HA does not reach a membrane that shows features typical of an apical membrane. This finding indicates either the uniqueness of the myelin membrane or the requirement of additional regulatory factors, absent in OLG, for apical delivery. These remarkable results emphasize that polarity and regulation of membrane transport in cultured OLG display features that are quite different from those in polarized cells.