823 resultados para Transportation system management.
Resumo:
In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.
Resumo:
The lack of flexibility in logistic systems currently on the market leads to the development of new innovative transportation systems. In order to find the optimal configuration of such a system depending on the current goal functions, for example minimization of transport times and maximization of the throughput, various mathematical methods of multi-criteria optimization are applicable. In this work, the concept of a complex transportation system is presented. Furthermore, the question of finding the optimal configuration of such a system through mathematical methods of optimization is considered.
Resumo:
This document describes planned investments in Iowa’s multimodal transportation system including aviation, transit, railroads, trails, and highways. This five-year program documents $3.5 billion of highway and bridge construction projects on the primary road system using federal and state funding. Of that funding, a little over $500 million is available due to the passage of Senate File 257 in February 2015. As required by Senate File 257, this program includes a list of the critical highway and bridge projects funded with the additional revenue. Since last year’s program, a new federal surface transportation authorization bill was passed and signed into law. This authorization bill is titled Fixing America’s Surface Transportation (FAST) Act. The FAST Act, for the first time in many years, provides federal funding certainty over most of the time covered by this Program. In addition, it provided additional federal funding for highway and bridge projects.
Resumo:
The objective of this research was to develop a methodology for transforming and dynamically segmenting data. Dynamic segmentation enables transportation system attributes and associated data to be stored in separate tables and merged when a specific query requires a particular set of data to be considered. A major benefit of dynamic segmentation is that individual tables can be more easily updated when attributes, performance characteristics, or usage patterns change over time. Applications of a progressive geographic database referencing system in transportation planning are vast. Summaries of system condition and performance can be made, and analyses of specific portions of a road system are facilitated.
Resumo:
In order to determine the adequacy with which safety problems on low-volume rural roadways were addressed by the four states of Federal Region VII (Iowa, Kansas, Missouri, and Nebraska), a review was made of the states' safety policies. After reviewing literature dealing with the identification of hazardous locations, evaluation methodologies, and system-wide safety improvements, a survey of the states' safety policies was conducted. An official from each state was questioned about the various aspects and procedures dealing with safety improvements. After analyzing and comparing the remarkably diverse policies, recommendations were made in the form of a model safety program. This program included special modifications that would help remediate hazards on low-volume rural roadways. Especially encouraged is a system-wide approach to improvement which would cover all parts of the highway system, not just urban and high-volume roadways.
Resumo:
The spirit behind the creation of the task force is one of good government. It rests upon the basic premise that taxpayers demand the best service possible for their tax dollars. Combine this demand for efficiency with Iowa's aging roadway system, and a projected increase in the state's vehicle miles traveled, the need to examine cost savings becomes apparent. Beyond the rational for good and efficient government, however, is a major concern for potential future reductions in Federal highway funds. Iowa is likely entering a period of needing an expanded transportation system with at best a static capacity for maintenance and construction.
Resumo:
This report was prepared for the Iowa Department of Transportation to document the results of a comprehensive study of the US 61 bypass corridor in Muscatine, Iowa. The focus of the study was to address community concerns regarding traffic safety and traffic operations. In completing the study, accident and traffic volume data was collected and analyzed. Input from the public and elected officials of the Muscatine community was also obtained. The goals of the project were to: Accurately identify the nature of the types of problems and the locations where the problems were occurring; Formulate a range of possible remedial measures; Analyze and test those proposed measures; Inform the community of the nature of the traffic problems and of the proposed remedies; Seek feedback from the community on those proposed remedies; Develop a comprehensive list of recommended improvements; Develop cost estimates and assign priorities to those possible improvements. An additional goal of this project was to identify possible Intelligent Transportation System (ITS) measures that could be used to address the safety and operations problems that have developed along this corridor. The proposed ITS measures were also to be analyzed to determine their likely benefits and their likely success if used at other locations elsewhere in Iowa.
Resumo:
Traffic demand increases are pushing aging ground transportation infrastructures to their theoretical capacity. The result of this demand is traffic bottlenecks that are a major cause of delay on urban freeways. In addition, the queues associated with those bottlenecks increase the probability of a crash while adversely affecting environmental measures such as emissions and fuel consumption. With limited resources available for network expansion, traffic professionals have developed active traffic management systems (ATMS) in an attempt to mitigate the negative consequences of traffic bottlenecks. Among these ATMS strategies, variable speed limits (VSL) and ramp metering (RM) have been gaining international interests for their potential to improve safety, mobility, and environmental measures at freeway bottlenecks. Though previous studies have shown the tremendous potential of variable speed limit (VSL) and VSL paired with ramp metering (VSLRM) control, little guidance has been developed to assist decision makers in the planning phase of a congestion mitigation project that is considering VSL or VSLRM control. To address this need, this study has developed a comprehensive decision/deployment support tool for the application of VSL and VSLRM control in recurrently congested environments. The decision tool will assist practitioners in deciding the most appropriate control strategy at a candidate site, which candidate sites have the most potential to benefit from the suggested control strategy, and how to most effectively design the field deployment of the suggested control strategy at each implementation site. To do so, the tool is comprised of three key modules, (1) Decision Module, (2) Benefits Module, and (3) Deployment Guidelines Module. Each module uses commonly known traffic flow and geometric parameters as inputs to statistical models and empirically based procedures to provide guidance on the application of VSL and VSLRM at each candidate site. These models and procedures were developed from the outputs of simulated experiments, calibrated with field data. To demonstrate the application of the tool, a list of real-world candidate sites were selected from the Maryland State Highway Administration Mobility Report. Here, field data from each candidate site was input into the tool to illustrate the step-by-step process required for efficient planning of VSL or VSLRM control. The output of the tool includes the suggested control system at each site, a ranking of the sites based on the expected benefit-to-cost ratio, and guidelines on how to deploy the VSL signs, ramp meters, and detectors at the deployment site(s). This research has the potential to assist traffic engineers in the planning of VSL and VSLRM control, thus enhancing the procedure for allocating limited resources for mobility and safety improvements on highways plagued by recurrent congestion.
Resumo:
Retaining walls are important assets in the transportation infrastructure and assessing their condition is important to prolong their performance and ultimately their design life. Retaining walls are often overlooked and only a few transportation asset management programs consider them in their inventory. Because these programs are few, the techniques used to assess their condition focus on a qualitative assessment as opposed to a quantitative approach. The work presented in this thesis focuses on using photogrammetry to quantitatively assess the condition of retaining walls. Multitemporal photogrammetry is used to develop 3D models of the retaining walls, from which offset displacements are measured to assess their condition. This study presents a case study from a site along M-10 highway in Detroit, MI were several sections of retaining walls have experienced horizontal displacement towards the highway. The results are validated by comparing with field observations and measurements. The limitations of photogrammetry were also studied by using a small scale model in the laboratory. The analysis found that the accuracy of the offset displacement measurements is dependent on the distance between the retaining wall and the sensor, location of the reference points in 3D space, and the focal length of the lenses used by the camera. These parameters were not ideal for the case study at the M-10 highway site, but the results provided consistent trends in the movement of the retaining wall that couldn’t be validated from offset measurements. The findings of this study confirm that photogrammetry shows promise in generating 3D models to provide a quantitative condition assessment for retaining walls within its limitations.
Resumo:
Matrix factorization (MF) has evolved as one of the better practice to handle sparse data in field of recommender systems. Funk singular value decomposition (SVD) is a variant of MF that exists as state-of-the-art method that enabled winning the Netflix prize competition. The method is widely used with modifications in present day research in field of recommender systems. With the potential of data points to grow at very high velocity, it is prudent to devise newer methods that can handle such data accurately as well as efficiently than Funk-SVD in the context of recommender system. In view of the growing data points, I propose a latent factor model that caters to both accuracy and efficiency by reducing the number of latent features of either users or items making it less complex than Funk-SVD, where latent features of both users and items are equal and often larger. A comprehensive empirical evaluation of accuracy on two publicly available, amazon and ml-100 k datasets reveals the comparable accuracy and lesser complexity of proposed methods than Funk-SVD.
Resumo:
Past studies of software maintenance issues have largely concentrated on the average North American firm. While they have made a substantial contribution to good information system management practice, it is believed that further segmentation of sample data and cross-country comparisons will help to identify patterns of behaviour more akin to many less average organizations in North America and elsewhere. This paper compares the Singapore maintenance scene with the reported North American experience. Comparisons are also made between: Government organizations, Singapore corporations and multinational corporations (MNCs); mainframe and minicomputer installations; and fourth-generation language (4GL) and non-4GL computer installations. Study findings, while in many cases were similar to earlier US studies, do show the importance of Singapore's young application portfolio, the widespread usage of 4GLs and the severe maintenance personnel problems.
Resumo:
Visiting a modern shopping center is becoming vital in our society nowadays. The fast growth of shopping center, transportation system, and modern vehicles has given more choices for consumers in shopping. Although there are many reasons for the consumers in visiting the shopping center, the influence of travel time and size of shopping center are important things to be considered towards the frequencies of visiting customers in shopping centers. A survey to the customers of three major shopping centers in Surabaya has been conducted to evaluate the Ellwood’s model and Huff’s model. A new exponent value N of 0.48 and n of 0.50 has been found from the Ellwood’s model, while a coefficient of 0.267 and an add value of 0.245 have been found from the Huff’s model.
Resumo:
Driving on motorways has largely been reduced to a lane-keeping task with cruise control. Rapidly, drivers are likely to get bored with such a task and take their attention away from the road. This is of concern in terms of road safety – particularly for professional drivers - since inattention has been identified as one of the main contributing factors to road crashes and is estimated to be involved in 20 to 30% of these crashes. Furthermore, drivers are not aware that their vigilance level has decreased and that their driving performance is impaired. Intelligent Transportation System (ITS) intervention can be used as a countermeasure against vigilance decrement. This paper aims to identify a variety of metrics impacted during monotonous driving - ranging from vehicle data to physiological variables - and relate them to two monotonous factors namely the monotony of the road design (straightness) and the monotony of the environment (landscape, signage, traffic). Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). The two monotonous factors are varied (high and low) leading to the use of four different driving scenarios (40 minutes each). We show with Generalised Linear Mixed Models that driver performance decreases faster when the road is monotonous. We also highlight that road monotony impairs a variety of driving performance and vigilance measures, ranging from speed, lateral position of the vehicle to physiological measurements such as heart rate variability, blink frequency and electrodermal activity. This study informs road designers of the importance of having a varied road environment. It also provides a range of metrics that can be used to detect in real-time the impairment of driving performance on monotonous roads. Such knowledge could result in the development of an in-vehicle device warning drivers at early signs of driving performance impairment on monotonous roads.
Resumo:
In an open railway access market, the provisions of railway infrastructures and train services are separated and independent. Negotiations between the track owner and train service providers are thus required for the allocation of the track capacity and the formulation of the services timetables, in which each party, i.e. a stakeholder, exhibits intelligence from the previous negotiation experience to obtain the favourable terms and conditions for the track access. In order to analyse the realistic interacting behaviour among the stakeholders in the open railway access market schedule negotiations, intelligent learning capability should be included in the behaviour modelling. This paper presents a reinforcement learning approach on modelling the intelligent negotiation behaviour. The effectiveness of incorporating learning capability in the stakeholder negotiation behaviour is then demonstrated through simulation.
Resumo:
Crash prediction models are used for a variety of purposes including forecasting the expected future performance of various transportation system segments with similar traits. The influence of intersection features on safety have been examined extensively because intersections experience a relatively large proportion of motor vehicle conflicts and crashes compared to other segments in the transportation system. The effects of left-turn lanes at intersections in particular have seen mixed results in the literature. Some researchers have found that left-turn lanes are beneficial to safety while others have reported detrimental effects on safety. This inconsistency is not surprising given that the installation of left-turn lanes is often endogenous, that is, influenced by crash counts and/or traffic volumes. Endogeneity creates problems in econometric and statistical models and is likely to account for the inconsistencies reported in the literature. This paper reports on a limited-information maximum likelihood (LIML) estimation approach to compensate for endogeneity between left-turn lane presence and angle crashes. The effects of endogeneity are mitigated using the approach, revealing the unbiased effect of left-turn lanes on crash frequency for a dataset of Georgia intersections. The research shows that without accounting for endogeneity, left-turn lanes ‘appear’ to contribute to crashes; however, when endogeneity is accounted for in the model, left-turn lanes reduce angle crash frequencies as expected by engineering judgment. Other endogenous variables may lurk in crash models as well, suggesting that the method may be used to correct simultaneity problems with other variables and in other transportation modeling contexts.