954 resultados para Transcriptional Regulation
Resumo:
Despite consistent research into the molecular principles of the DNA damage repair pathway for almost two decades, it has only recently been found that RNA metabolism is very tightly related to this pathway, and the two ancient biochemical mechanisms act in alliance to maintain cellular genomic integrity. The close links between these pathways are well exemplified by examining the base excision repair pathway, which is now well known for dual roles of many of its members in DNA repair and RNA surveillance, including APE1, SMUG1, and PARP1. With additional links between these pathways steadily emerging, this review aims to provide a summary of the emerging roles for DNA repair proteins in the post-transcriptional regulation of RNAs.
Resumo:
ANKHD1 (Ankyrin repeat and KH domain-containing protein 1) is highly expressed and plays an important role in the proliferation and cell cycle progression of multiple myeloma (MM) cells. ANKHD1 downregulation modulates cell cycle gene expression and upregulates p21 irrespective of the TP53 mutational status of MM cell lines. The present study was aimed to investigate the role of ANKHD1 in MM in vitro clonogenicity and in vivo tumourigenicity, as well as the role of ANKHD1 in p21 transcriptional regulation. ANKHD1 silencing in MM cells resulted in significantly low no. of colonies formed and in slow migration as compared to control cells (p < 0.05). Furthermore, in xenograft MM mice models, tumour growth was visibly suppressed in mice injected with ANKHD1 silenced cells compared to the control group. There was a significant decrease in tumour volume (p = 0.006) as well as in weight (p = 0.02) in the group injected with silenced cells compared to those of the control group. Co-immunoprecipitation and chromatin immunoprecipitation (ChIP) assays confirmed the interaction between p21 and ANKHD1. Moreover, overexpression of ANKHD1 downregulated the activity of a p21 promoter in luciferase assays. Decrease in luciferase activity suggests a direct role of ANKHD1 in p21 transcriptional regulation. In addition confocal analysis after U266 cells were treated with Leptomycin B (LMB) for 24 h showed accumulation of ANKHD1 inside the nucleus as compared to untreated cells where ANKHD1 was found to be predominantly in cytoplasm. This suggests ANKHD1 might be shuttling between cytoplasm and nucleus. In conclusion, ANKHD1 promotes MM growth by repressing p21 a potent cell cycle regulator.
Resumo:
Background: Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results: In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a sigma(54)-dependent manner. A more complete picture of the sigma(54) regulon was achieved by combining the transcriptome data with an in silico search for potential sigma(54)-dependent promoters, using a position weight matrix approach. One of these sigma(54)-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a sigma(54)-dependent promoter. Conclusions: Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the sigma(54) regulon.
Resumo:
Objective: To reevaluate the responses of thyrotropin-releasing hormone ( TRH) stimulation test in baseline condition as well as after the administration of graded supraphysiological doses of liothyronine ( L- T-3) in normal subjects. Design: To assess various parameters related to the hypothalamic-pituitary axis and peripheral tissue responses to L- T-3 in 22 normal individuals ( median age: 30.5 years). Subjects were submitted to an intravenous TRH test at baseline condition and also to the oral administration of sequential and graded doses of L- T-3 ( 50, 100, and 200 mu g/day), each given over 3 days, at an outpatient clinic. Blood samples were obtained for thyrotropin (TSH) and prolactin (PRL) at basal and then 15, 30, and 60 minutes after the TRH injection. Effects of L- T3 administration on cholesterol, creatine kinase, retinol, ferritin, and sex hormone-binding globulin ( SHBG) were also measured at basal and after the oral administration of L- T-3. Main outcome: TRH administration resulted in an increase of 4-to 14-fold rise in serum TSH ( 8.3 +/- 2.5-fold), and in a slight rise in serum PRL concentrations ( 3.8 +/- 1.5-fold). Administration of graded doses of triiodothyronine ( T-3) resulted in a dose-dependent suppression of TSH and PRL. Basal thyroxine- binding globulin (TBG) and cholesterol levels decreased, and ferritin and SHBG increased after L- T-3 administration, while creatine kinase and retinol did not change throughout the study. There was a positive correlation between basal TSH and TSH peak response to TRH at basal condition and after each sequential L- T-3 doses. On the other hand, TSH peak response to the TRH test did not predict cholesterol, TBG, ferritin, or SHBG values. Conclusion: Using the current methods on hormone and biochemical analysis, we standardized the response of many parameters to TRH stimulation test after sequential and graded T-3 suppression test in normal subjects. Our data suggest that the evaluation of the responses of the hypothalamus-pituitary axis to TRH test as well as the impact of L- T-3 on peripheral tissues were not modified by the current methods.
Resumo:
We have evaluated T-DNA mediated plant promoter tagging, with a left-border-linked promoterless firefly luciferase (luc) construct, as a strategy for the isolation of novel plant promoters. In a population of approximately 300 transformed tobacco plants, IO lines showed LUC activity, including novel tissue-specific and developmental patterns of expression. One line, showing LUC activity only in the shoot and root apical meristems, was further characterised. Inverse PCR was used to amplify a 1.5 kb fragment of plant DNA flanking the single-copy T-DNA insertion in this line. With the exception of a 249 bp highly repetitive element, this sequence is present as a single copy in the tobacco genome, and is not homologous to any previously characterised DNA sequences. Sequence analysis revealed the presence of several motifs that may be involved in transcriptional regulation. Transgenic tobacco plants transformed with a transcriptional fusion of this putative promoter sequence to the beta-glucuronidase (uidA) reporter gene, showed GUS activity confined to the shoot tip and mature pollen. This promoter may be useful to direct the expression of genes controlling the transition to flowering, or genes to reduce losses due to pests and stresses damaging plant apical meristems.
Resumo:
Myb-binding protein 1a (Mybbp1a) is a novel nuclear protein localized predominantly, but not exclusively, in nucleoli. Although initially isolated as a c-Myb interacting protein, Mybbp1a is expressed ubiquitously, associates with a number of different transcription factors, and may play a role in both RNA polymerase I- and II-mediated transcriptional regulation. However, its precise function remains unclear. In this study we show that Mybbp1a is a nucleocytoplasmic shuttling protein and investigate the mechanisms responsible for both nuclear import and export. The carboxyl terminus of Mybbp1a, which contains seven short basic amino acid repeat sequences, is responsible for both nuclear and nucleolar localization, and this activity can be transferred to a heterologous protein. Deletion mapping demonstrated that these repeat sequences appear to act incrementally, with successive deletions resulting in a corresponding increase in the proportion of protein localized in the cytoplasm. Glutathione S-transferase pulldown experiments showed that the nuclear receptor importin-alpha/beta mediates Mybbp1a nuclear import. Interspecies heterokaryons were used to demonstrate that Mybbp1a was capable of shuttling between the nucleus and the cytoplasm. Deletion analysis and in vivo export studies using a heterologous assay system identified several nuclear export sequences which facilitate Mybbp1a nuclear export of Mybbp1a by CRM1-dependent and -independent pathways. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Human sulfotransferase SULT1A1 is an important phase II xenobiotic metabolizing enzyme that is highly expressed in the liver and mediates the sulfonation of drugs, carcinogens, and steroids. Until this study, the transcriptional regulation of the SULT1A subfamily had been largely unexplored. Preliminary experiments in primary human hepatocytes showed that SULT1A mRNA levels were not changed in response to nuclear receptor activators, such as dexamethasone and 3-methylcolanthrene, unlike other metabolizing enzymes. Using HepG2 cells, the high activity of the TATA-less SULT1A1 promoter was shown to be dependent on the presence of Sp1 and Ets transcription factor binding sites (EBS), located within - 112 nucleotides from the transcriptional start site. The homologous promoter of the closely related SULT1A3 catecholamine sulfotransferase, which is expressed at negligible levels in the adult liver, displayed 70% less activity than SULT1A1. This was shown to be caused by a two-base pair difference in the EBS. The Ets transcription factor GA binding protein (GABP) was shown to bind the SULT1A1 EBS and could transactivate the SULT1A1 promoter in Drosophila melanogaster S2 cells. Cotransfection of Sp1 could synergistically enhance GABP-mediated activation by 10-fold. Although Sp1 and GABP alone could induce SULT1A3 promoter activity, the lack of the EBS on this promoter prevented a synergistic interaction between the two factors. This study reports the first insight into the transcriptional regulation of the SULT1A1 gene and identifies a crucial difference in regulation of the closely related SULT1A3 gene, which accounts for the two enzymes' differential expression patterns observed in the adult liver.
Resumo:
Sulfate is required for detoxification of xenobiotics such as acetaminophen (APAP), a leading cause of liver failure in humans. The NaS1 sulfate transporter maintains blood sulfate levels sufficiently high for sulforiation reactions to work effectively for drug detoxification. In the present study, we identified two loss-of-function polymorphisms in the human NaS1 gene and showed the Nas1-null mouse to be hypersensitive to APAP hepatotoxicity. APAP treatment led to increased liver damage and decreased hepatic glutathione levels in the hyposulfatemic Nas1-null mice compared with that in normosulfatemic wild-type mice. Analysis of urinary APAP metabolites revealed a significantly lower ratio of APAP-sulfate to APAP-glucuronide in the Nas1-null mice. These results suggest hyposulfatemia increases sensitivity to APAP-induced hepatotoxicity by decreasing the sulfonation capacity to metabolize APAP. In conclusion, the results of this study highlight the importance of plasma sulfate level as a key modulator of acetaminophen metabolism and suggest that individuals with reduced NaS1 sulfate transporter function would be more sensitive to hepatotoxic agents.
Resumo:
Cutaneous asthenia is a hereditary connective tissue disease, primarily of dogs and cats, resembling Ehlers-Danlos syndrome in man. Collagen dysplasia results in skin hyperextensibility, skin and vessel fragility, and poor wound healing. The purpose of this study was to describe the histological findings in a dog with a collagenopathy consistent with cutaneous asthenia. An 8-month-old crossbreed female dog presented with lacerations and numerous atrophic and irregular scars. The skin was hyperextensible and easily torn by the slightest trauma. Ultrastructurally, the dermis was comprised of elaunin and oxytalan microfibrils. These are immature fibres in which the fibrillar component is increased but elastin is reduced. Collagen fibres were profoundly disorganized. The fibrils had a highly irregular outline and a corroded appearance when viewed in cross-section, and were spiralled and fragmented in a longitudinal view. Dermal fibroblasts displayed a conspicuous thickening of the nuclear lamina. Nuclear lamins form a fibrous nucleoskeletal network of intermediate-sized filaments underlying the inner nuclear membrane. Mutations in lamins or lamin-associated proteins cause a myriad of genetic diseases collectively called laminopathies. Disruption of the nuclear lamina seems to affect chromatin organization and transcriptional regulation of gene expression. A common link among all laminopathies may be a failure of stem cells to regenerate mesenchymal tissue. This could contribute to the connective tissue dysplasia seen in cutaneous asthenia.
Resumo:
RNA silencing refers to a series of nuclear and cytoplasmatic processes involved in the post-transcriptional regulation of gene expression or post-transcriptional gene silencing (PTGS), either by sequence-specific mRNA degradation or by translational at-rest. The best characterized small RNAs are microRNAs (miRNAs), which predominantly perform gene silencing through post-transcriptional mechanisms. in this work we used bioinformatic approaches to identify the parasitic trematode Schistosoma Mansoni sequences that are similar to enzymes involved in the post-transcriptional gene silencing mediated by miRNA pathway. We used amino acid sequences of well-known proteins involved in the miRNA pathway against S. mansoni genome and transcriptome databases identifying a total of 13 Putative proteins in the parasite. In addition, the transcript levels of SinDicer1 and SmAgo2/3/4 were identified by qRT-PCR using cercariae, adult worms, eggs and in vitro Cultivated schistosomula. Our results showed that the SmDicer1 and SmAgo2/3/4 are differentially expressed during schistosomula development, suggesting that the miRNA pathway is regulated at the transcript level and therefore may control gene expression during the life cycle of S. mansoni. (C) 2008 Published by Elsevier Ireland Ltd.
Resumo:
Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
To identify genes differentially expressed in a strain of the mold Aspergillus nidulans carrying a loss-of-function mutation in palA, a gene in the pH-responsive signal transduction pathway, suppression subtractive hybridization was performed between RNA isolated from the biA1 and biA1 palA1 strains grown under limiting inorganic phosphate at pH 5.0. We have identified several genes upregulated in the biA1 palA1 mutant strain that play important roles in mitotic fidelity, stress responses, enzyme secretion, signal transduction mechanisms, development, genome stability, phosphate sensing, and transcriptional regulation among others. The upregulation of eight of these transcripts was also validated by Northern blot. Moreover, we show that a loss of function mutation in the palA gene drastically reduced the neutral sugar content of the acid phosphatase PacA secreted by the fungus A. nidulans grown at pH 5.0 compared with a control strain.
Calpain5 expression is decreased in endometriosis and regulated by HOXA10 in human endometrial cells
Resumo:
Calpains have been implicated in the regulation of apoptosis. Here, we identified Calpain5 as a target of HOXA10 transcriptional regulation in endometrial cells as well as its aberrant regulation in endometriosis. Histologically confirmed biopsies of endometriosis were obtained from 20 women. Eutopic endometrium was collected by endometrial biopsy from 30 controls and from the 20 subjects with endometriosis. First trimester decidual samples were obtained from five subjects at the time of pregnancy termination. Immunohistochemistry was used to identify Calpain5 expression. Calpain5 was expressed in endometrial stromal and glandular cells throughout the menstrual cycle and in decidua. Calpain5 protein expression was decreased in both stromal and glandular cells from women with endometriosis compared with that of fertile controls. Human endometrial stromal and epithelial cell lines were transfected with pcDNA/HOXA10, HOXA10 siRNA or respective controls. Quantitative real-time RT-PCR was performed to determine expression of HOXA10 and Calpain5 in each group. Transfection of HESC cells with an HOXA10 expression construct led to increased Calpain5 expression, whereas transfection with siRNA resulted in decreased expression. In conclusion, Calpain5 expression is regulated by HOXA10. Calpain5 expression was decreased in endometriosis likely as a result of decreased HOXA10 expression. Decreased apoptosis in endometrial cells may promote the development of endometriosis through a pathway involving HOXA10, Calpain5 and caspase.
Resumo:
Context: Type 1 pseudohypoaldosteronism (PHA1), a primary form of mineralocorticoid resistance, isdueto inactivating mutations of the NR3C2 gene, coding for the mineralocorticoid receptor (MR). Objective: The objective of the study was to assess whether different NR3C2 mutations have distinct effects on the pattern of MR-dependent transcriptional regulation of aldosterone-regulated genes. Design and Methods: Four MR mutations affecting residues in the ligand binding domain, identified in families with PHA1, were tested. MR proteins generated by site-directed mutagenesis were analyzed for their binding to aldosterone and were transiently transfected into renal cells to explore the functional effects on the transcriptional activity of the receptors by cis-trans-cotrans-activation assays and by measuring the induction of endogenous gene transcription. Results: Binding assays showed very low or absent aldosterone binding for mutants MR(877Pro), MR(848Pro), and MR(947stop) and decreased affinity for aldosterone of MR(843Pro). Compared with wildtype MR, the mutations p.Leu843Pro and p.Leu877Pro displayed half-maximal aldosterone-dependent transactivation of reporter genes driven by mouse mammary tumor virus or glucocorticoid response element-2 dependent promoters, whereas MR(848Pro) and MR(947stop) nearly or completely lost transcriptional activity. Although MR(848Pro) and MR(947stop) were also incapable of inducing aldosterone-dependent gene expression ofendogenoussgk1, GILZ, NDRG2, and SCNN1A, MR(843Pro) retained complete transcriptional activity on sgk1 and GILZ gene expression, and MR(877Pro) negatively affected the expression of sgk1, NDRG2, and SCNN1A. Conclusions: Our data demonstrate that MR mutations differentially affect individual gene expression in a promoter-dependent manner. Investigation of differential gene expression profiles in PHA1 may allow a better understanding of the molecular substrate of phenotypic variability and to elucidate pathogenic mechanisms underlying the disease. (J Clin Endocrinol Metab 96: E519-E527, 2011)
Resumo:
The sciarid DNA puff C4 BhC4-1 gene is amplified and transcribed in salivary glands at the end of the larval stage. In transgenic Drosophila, the BhC4-1 promoter drives transcription in prepupal salivary glands and in the ring gland of late embryos. A bioinformatics analysis has identified 162 sequences similar to distinct regions of the BhC4-1 proximal promoter, which are predominantly located either in 5` or 3` regions or introns in the Drosophila melanogaster genome. A significant number of the identified sequences are found in the regulatory regions of Drosophila genes that are expressed in the salivary gland. Functional assays in Drosophila reveal that the BhC4-1 proximal promoter contains both a 129 bp (-186/-58) salivary gland enhancer and a 67 bp (-253/-187) ring gland enhancer that drive tissue specific patterns of developmentally regulated gene expression, irrespective of their orientation.