987 resultados para Trafic Dynamique
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
La dynamique spatiale du marché des bureaux dans la région métropolitaine de Montréal de 1987 à 2001
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.
Resumo:
La variation phénotypique est essentielle à la persistance des organismes dans le temps ainsi qu’à la colonisation de nouveaux habitats. Les principales sources de variation phénotypique sont la génétique et l'épigénétique. L'épigénétique a été proposé comme un atout important pour les organismes asexués pour compenser le manque de diversité génétique. L'objectif de cette étude est d'évaluer si l’absence de variation génétique est compensée par l'épigénétique en comparant les profils de méthylation d’individus gynogènes et kleptogènes des hybrides de salamandre à points bleus. Les individus échantillonnés s’organisent en cinq groupes génétiquement différenciés, provenant du même haplome paternel A. jeffersonianum. Deux des cinq groupes sont exclusivement gynogènes, pour des raisons écologiques ou génomiques. Les trois autres groupes sont formés d’individus parfois kleptogènes, car ils présentent une variation génétique plus élevée au sein d’un site qu’entre les sites, en plus de porter des allèles très divergents par rapport à la distribution globale des allèles hybrides, trouvés en haute fréquence dans les populations sympatriques de A. laterale. Les patrons épigénétiques sont variables et distincts entre les cinq groupes génétiques. Les groupes gynogènes sont les seuls à présenter un effet environnemental significatif sur leurs patrons épigénétiques, suggérant que ces individus clonaux doivent être en mesure de maximiser leur potentiel de variation épigénétique pour faire face à des variations environnementales.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.