915 resultados para Traffic oscillations
Resumo:
Bandwidths and offsets are important components in vehicle traffic control strategies. This article proposes new methods for quantifying and selecting them. Bandwidth is the amount of green time available for vehicles to travel through adjacent intersections without the requirement to stop at the second traffic light. The offset is the difference between the starting-time of ``green'' periods at two adjacent intersections, along a given route. The core ideas in this article were developed during the 2013 Maths and Industry Study Group in Brisbane, Australia. Analytical expressions for computing bandwidth, as a function of offset, are developed. An optimisation model, for selecting offsets across an arterial, is proposed. Arterial roads were focussed upon, as bandwidth and offset have a greater impact on these types of road as opposed to a full traffic network. A generic optimisation-simulation approach is also proposed to refine an initial starting solution, according to a specified metric. A metric that reflects the number of stops, and the distance between stops, is proposed to explicitly reduce the dissatisfaction of road users, and to implicitly reduce fuel consumption and emissions. Conceptually the optimisation-simulation approach is superior as it handles real-life complexities and is a global optimisation approach. The models and equations in this article can be used in road planning and traffic control.
Resumo:
Several significant studies have been made in recent decades toward understanding road traffic noise and its effects on residential balconies. These previous studies have used a variety of techniques such as theoretical models, scale models and measurements on real balconies. The studies have considered either road traffic noise levels within the balcony space or inside an adjacent habitable room or both. Previous theoretical models have used, for example, simplified specular reflection calculations, boundary element methods (BEM), adaptations of CoRTN or the use of Sabine Theory. This paper presents an alternative theoretical model to predict the effects of road traffic noise spatially within the balcony space. The model includes a specular reflection component by calculating up to 10 orders of source images. To account for diffusion effects, a two compartment radiosity component is utilised. The first radiosity compartment is the urban street, represented as a street with building facades on either side. The second radiosity compartment is the balcony space. The model is designed to calculate the predicted road traffic noise levels within the balcony space and is capable of establishing the effect of changing street and balcony geometries. Screening attenuation algorithms are included to determine the effects of solid balcony parapets and balcony ceiling shields.
Resumo:
Accurate prediction of incident duration is not only important information of Traffic Incident Management System, but also an ffective input for travel time prediction. In this paper, the hazard based prediction odels are developed for both incident clearance time and arrival time. The data are obtained from the Queensland Department of Transport and Main Roads’ STREAMS Incident Management System (SIMS) for one year ending in November 2010. The best fitting distributions are drawn for both clearance and arrival time for 3 types of incident: crash, stationary vehicle, and hazard. The results show that Gamma, Log-logistic, and Weibull are the best fit for crash, stationary vehicle, and hazard incident, respectively. The obvious impact factors are given for crash clearance time and arrival time. The quantitative influences for crash and hazard incident are presented for both clearance and arrival. The model accuracy is analyzed at the end.
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e., the autonomous vehicles' ability to make appropriate driving decisions in city road traffic situations. The paper explains the overall controls system architecture, the decision making task decomposition, and focuses on how Multiple Criteria Decision Making (MCDM) is used in the process of selecting the most appropriate driving maneuver from the set of feasible ones. Experimental tests show that MCDM is suitable for this new application area.
Resumo:
Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.
Resumo:
Traffic state estimation in an urban road network remains a challenge for traffic models and the question of how such a network performs remains a difficult one to answer for traffic operators. Lack of detailed traffic information has long restricted research in this area. The introduction of Bluetooth into the automotive world presented an alternative that has now developed to a stage where large-scale test-beds are becoming available, for traffic monitoring and model validation purposes. But how much confidence should we have in such data? This paper aims to give an overview of the usage of Bluetooth, primarily for the city-scale management of urban transport networks, and to encourage researchers and practitioners to take a more cautious look at what is currently understood as a mature technology for monitoring travellers in urban environments. We argue that the full value of this technology is yet to be realised, for the analytical accuracies peculiar to the data have still to be adequately resolved.
Resumo:
High-frequency electrostatic surface waves at the interface of a dusty plasma and a dielectric wall are investigated. The effects of ionization, recombination, and dust-charge variation are taken into account in a self-consistent manner, so that the system considered is closed. It is shown that a coupling of the surface waves and the dust-charge relaxation mode leads to anomalous damping and frequency downshift of the waves.
Resumo:
The effect of plasmon oscillations on the DC tunnel current in a gold nanoisland thin film (GNITF) is investigated using low intensity P~1W/cm2 continuous wave lasers. While DC voltages (1–150 V) were applied to the GNITF, it was irradiated with lasers at different wavelengths (k¼473, 532, and 633 nm). Because of plasmon oscillations, the tunnel current increased. It is found that the tunnel current enhancement is mainly due to the thermal effect of plasmon oscillations rather than other plasmonic effects. The results are highly relevant to applications of plasmonic effects in opto-electronic devices.
Resumo:
Traffic incidents are key contributors to non-recurrent congestion, potentially generating significant delay. Factors that influence the duration of incidents are important to understand so that effective mitigation strategies can be implemented. To identify and quantify the effects of influential factors, a methodology for studying total incident duration based on historical data from an ‘integrated database’ is proposed. Incident duration models are developed using a selected freeway segment in the Southeast Queensland, Australia network. The models include incident detection and recovery time as components of incident duration. A hazard-based duration modelling approach is applied to model incident duration as a function of a variety of factors that influence traffic incident duration. Parametric accelerated failure time survival models are developed to capture heterogeneity as a function of explanatory variables, with both fixed and random parameters specifications. The analysis reveals that factors affecting incident duration include incident characteristics (severity, type, injury, medical requirements, etc.), infrastructure characteristics (roadway shoulder availability), time of day, and traffic characteristics. The results indicate that event type durations are uniquely different, thus requiring different responses to effectively clear them. Furthermore, the results highlight the presence of unobserved incident duration heterogeneity as captured by the random parameter models, suggesting that additional factors need to be considered in future modelling efforts.
Resumo:
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams. It is necessary to consider human-factors in {CF} modeling for a more realistic representation of {CF} behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of {CF} models available in the literature, none of these specifically focuses on the human factors in these models. This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.
Resumo:
Product Ecosystem theory is an emerging theory that shows that disruptive “game changing” innovation is only possible when the entire ecosystem is considered. When environmental variables change faster than products or services can adapt, disruptive innovation is required to keep pace. This has many parallels with natural ecosystems where species that cannot keep up with changes to the environment will struggle or become extinct. In this case the environment is the city, the environmental pressures are pollution and congestion, the product is the car and the product ecosystem is comprised of roads, bridges, traffic lights, legislation, refuelling facilities etc. Each one of these components is the responsibility of a different organisation and so any change that affects the whole ecosystem requires a transdisciplinary approach. As a simple example, cars that communicate wirelessly with traffic lights are only of value if wireless-enabled traffic lights exist and vice versa. Cars that drive themselves are technically possible but legislation in most places doesn’t allow their use. According to innovation theory, incremental innovation tends to chase ever diminishing returns and becomes increasingly unable to tackle the “big issues.” Eventually “game changing” disruptive innovation comes along and solves the “big issues” and/or provides new opportunities. Seen through this lens, the environmental pressures of urban traffic congestion and pollution are the “big issues.” It can be argued that the design of cars and the other components of the product ecosystem follow an incremental innovation approach. That is why the “big issues” remain unresolved. This paper explores the problems of pollution and congestion in urban environments from a Product Ecosystem perspective. From this a strategy will be proposed for a transdisciplinary approach to develop and implement solutions.
Resumo:
This paper reports profiling information for speeding offenders and is part of a larger project that assessed the deterrent effects of increased speeding penalties in Queensland, Australia, using a total of 84,456 speeding offences. The speeding offenders were classified into three groups based on the extent and severity of an index offence: once-only low-rang offenders; repeat high-range offenders; and other offenders. The three groups were then compared in terms of personal characteristics, traffic offences, crash history and criminal history. Results revealed a number of significant differences between repeat high-range offenders and those in the other two offender groups. Repeat high-range speeding offenders were more likely to be male, younger, hold a provisional and a motorcycle licence, to have committed a range of previous traffic offences, to have a significantly greater likelihood of crash involvement, and to have been involved in multiple-vehicle crashes than drivers in the other two offender types. Additionally, when a subset of offenders’ criminal histories were examined, results revealed that repeat high-range speeding offenders were also more likely to have committed a previous criminal offence compared to once only low-range and other offenders and that 55.2% of the repeat high-range offenders had a criminal history. They were also significantly more likely to have committed drug offences and offences against order than the once only low-range speeding offenders, and significantly more likely to have committed regulation offences than those in the other offenders group. Overall, the results indicate that speeding offenders are not an homogeneous group and that, therefore, more tailored and innovative sanctions should be considered and evaluated for high-range recidivist speeders because they are a high-risk road user group.
Resumo:
This thesis presents an association rule mining approach, association hierarchy mining (AHM). Different to the traditional two-step bottom-up rule mining, AHM adopts one-step top-down rule mining strategy to improve the efficiency and effectiveness of mining association rules from datasets. The thesis also presents a novel approach to evaluate the quality of knowledge discovered by AHM, which focuses on evaluating information difference between the discovered knowledge and the original datasets. Experiments performed on the real application, characterizing network traffic behaviour, have shown that AHM achieves encouraging performance.