951 resultados para Trace Minerals


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present geochemical data of black smoker particulates filtered from hydrothermal fluids with seawater-dilutions ranging from 0-99%. Results indicate the dominance of sulphide minerals (Fe, Cu, and Zn sulphides) in all samples taken at different hydrothermal sites on the Mid-Atlantic Ridge. Pronounced differences in the geochemistry of the particles between Logatchev I and 5°S hydrothermal fields could be attributed to differences in fluid chemistry. Lower metal/sulphur ratios (Me/H2S < 1) compared to Logatchev I result in a larger amount of particles precipitated per liter fluid and the occurrence of elemental sulphur at 5°S, while at Logatchev I Fe oxides occur in larger amounts. Systematic trends with dilution degree of the fluid include the precipitation of large amounts of Cu sulphides at a low dilution and a pronounced drop with increasing dilution. Moreover, Fe (sulphides or oxides) precipitation increases with dilution of the vent fluid by seawater. Geochemical reaction path modeling of hydrothermal fluid-seawater mixing and conductive cooling indicates that Cu sulphide formation at Logatchev I and 5°S mainly occurs at high temperatures and low dilution of the hydrothermal fluid by seawater. Iron precipitation is enhanced at higher fluid dilution, and the different amounts of minerals forming at 5°S and Logatchev I are thermodynamically controlled. Larger total amounts of minerals and larger amounts of sulphide precipitate during the mixing path when compared to the cooling path. Differences between model and field observations do occur and are attributable to closed system modeling, to kinetic influences and possibly to organic constituents of the hydrothermal fluids not accounted for by the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microchemical analyses of rare earth element (REE) concentrations and Sr and S isotope ratios of anhydrite are used to identify sub-seafloor processes governing the formation of hydrothermal fluids in the convergent margin Manus Basin, Papua New Guinea. Samples comprise drill-core vein anhydrite and seafloor massive anhydrite from the PACMANUS (Roman Ruins, Snowcap and Fenway) and SuSu Knolls (North Su) active hydrothermal fields. Chondrite-normalized REE patterns in anhydrite show remarkable heterogeneity on the scale of individual grains, different from the near uniform REEN patterns measured in anhydrite from mid-ocean ridge deposits. The REEN patterns in anhydrite are correlated with REE distributions measured in hydrothermal fluids venting at the seafloor at these vent fields and are interpreted to record episodes of hydrothermal fluid formation affected by magmatic volatile degassing. 87Sr/86Sr ratios vary dramatically within individual grains between that of contemporary seawater and that of endmember hydrothermal fluid. Anhydrite was precipitated from a highly variable mixture of the two. The intra-grain heterogeneity implies that anhydrite preserves periods of contrasting hydrothermal versus seawater dominant near-seafloor fluid circulation. Most sulfate d34S values of anhydrite cluster around that of contemporary seawater, consistent with anhydrite precipitating from hydrothermal fluid mixed with locally entrained seawater. Sulfate d34S isotope ratios in some anhydrites are, however, lighter than that of seawater, which are interpreted as recording a source of sulfate derived from magmatic SO2 degassed from underlying felsic magmas in the Manus Basin. The range of elemental and isotopic signatures observed in anhydrite records a range of sub-seafloor processes including high-temperature hydrothermal fluid circulation, varying extents of magmatic volatile degassing, seawater entrainment and fluid mixing. The chemical and isotopic heterogeneity recorded in anhydrite at the inter- and intra-grain scale captures the dynamics of hydrothermal fluid formation and sub-seafloor circulation that is highly variable both spatially and temporally on timescales over which hydrothermal deposits are formed. Microchemical analysis of hydrothermal minerals can provide information about the temporal history of submarine hydrothermal systems that are variable over time and cannot necessarily be inferred only from the study of vent fluids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Centennial deposit is a high grade (~8% U3O8), deeply buried (~950m), unconformity-related U deposit located in the south-central region of the Athabasca Basin in northern Saskatchewan, Canada. The mineral chemistry of fine fractions (<63 μm) of soils from grids above the Centennial deposit were examined to understand possible controls on the geochemistry and radiogenic 207Pb/206Pb ratios measured in the clay-size (<2 μm) fractions used for exploration. Soil samples distal and proximal to the deposit projection to the surface and geophysically defined structures were selected. Mineral abundances were determined using the scanning electron microscope and Mineral Liberation Analysis. Zircon was the only U-rich mineral identified with modal abundances >0.02% by weight. Monazite, which can be U-rich, was identified, but not in significant abundances. The source of the zircon and other heavy minerals is interpreted to be from sub-cropping sources that are >100 km up-ice from Centennial. Trace element analysis using laser ablation inductively coupled plasma mass spectrometry of hydroseparated zircon grains indicate that zircon abundances and zircon Pb concentrations in surficial samples have minimal effect on the radiogenic 207Pb/206Pb ratios in the clay-fraction of the samples, with the dominant source of radiogenic Pb being clay mineral surfaces that trapped Pb during secondary dispersion from the Centennial uranium deposit through faults and fractures to the surface. The REE patterns indicate HREE enrichment in the clay-fractions of samples that have higher abundances of zircon in the <20 μm fraction. Immobile elements such as HREE that are concentrated in zircon can be used as indicators of radiogenic Pb being sourced from minerals at the surface rather than being sourced from secondary dispersion from deeply buried U deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study the origin of clay deposits occurring in an inland platform, in central Portugal, was investigated by their mineralogical and chemical composition. The clay deposits, exploited for ceramic industry are composed of silt-clay facies, the Monteira Member and the Arroça Member, which are assigned to the Coja Formation (Paleogene) and the Campelo Formation (Miocene), respectively. These clayey facies show almost compositional homogeneity, especially concerning texture. The mineralogical composition of the Monteira Member displays slightly higher content in smectite and interstratified clay minerals, which is supported by the chemical composition of samples analyzed. Both members present similar REE patterns, displaying an intense weathering record and little variation in the source area composition. Minor element geochemistry suggests low content in heavy minerals and transition metals. REE patterns and ratios of geochemical parameters support the dominant metasedimentary provenance, with a granite source contribution and also mature recycled sediments of continental origin. The study results’ suggest that the clays of these two members have the same source in terms of lithology and recycled sediments from the Hesperian massif. During the deposition of the Arroça Member, a major remobilization of the Monteira Member is suggested, explaining the geochemical similarity of both facies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of chillagite, wulfenite, stolzite, scheelite and wolframite were obtained at 298 and 77 K using a Raman microprobe in combination with a thermal stage. Chillagite is a solid solution of wulfenite and stolzite. The spectra of these molybdate minerals are orientation dependent. The band at 695 cm-1 is interpreted as an antisymmetric bridging mode associated with the tungstate chain. The bands at 790 and 881 cm-1 are associated with the antisymmetric and symmetric Ag modes of terminal WO2 whereas the origin of the 806 cm-1 band remains unclear. The 4(Eg) band was absent for scheelite. The bands at 353 and 401 cm-1 are assigned as either deformation modes or as r(Bg) and (Ag) modes of terminal WO2. The band at 462 cm-1 has an equivalent band in the infrared at 455 cm-1 assigned as as(Au) of the (W2O4)n chain. The band at 508 cm-1 is assigned as sym(Bg) of the (W2O4)n chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of selected autunites with phosphate as the anion have been studied using infrared spectroscopy. Each autunite mineral has its own characteristic spectrum. The spectra for different autunites with the same composition are different. It is proposed that this difference is due to the structure of water and hydrated cations in the interlayer region between the uranyl phosphate sheets. This structure is different for different autunites. The position of the water hydroxyl stretching bands is related to the strength of the hydrogen bonds as determined by hydrogen bond distance. The highly ordered structure of water is also observed in the water HOH bending modes where a high wavenumber bands are observed. The phosphate and uranyl stretching vibrations overlap and are obtained by curve resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of molybdate bearing minerals including wulfenite, powellite, lindgrenite and iriginite have been analysed by Raman microscopy. These minerals are closely related and often have related paragenesis. Raman microscopy enables the selection of individual crystals of these minerals for spectroscopic analysis even though several of the minerals can be found in the same matrix because of the paragenetic relationships between the minerals. The molybdenum bearing minerals lindgrenite, iriginite and koechlinite were studied by scanning electron microscopy and compositionally analysed by EDX methods using an electron probe before Raman spectroscopic analyses. The Raman spectra are assigned according to factor group analysis and related to the structure of the minerals. These minerals have characteristically different Raman spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of Raman spectroscopy to the study of the copper chloride minerals nantokite, eriochalcite and claringbullite has enabled the vibrational modes for the CuCl, CuOH and CuOH2 to be determined. Nantokite is characterised by bands at 205 and 155 cm-1 attributed to the transverse and longitudinal optic vibrations. Nantokite also has an intense band at 463 cm-1, eriochalcite at 405 and 390 cm-1 and claringbullite at 511 cm-1. These bands are attributed to CuO stretching modes. Water librational bands at around 672 cm-1 for eriochalcite have been identified and hydroxyl deformation modes of claringbullite at 970, 906 and 815 cm-1 are observed. Spectra of the three minerals are so characteristically different that the minerals are readily identified by Raman spectroscopy. The minerals are often determined in copper corrosion products by X-ray diffraction. Raman spectroscopy offers a rapid, in-situ technique for the identification of these corrosion products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium minerals are important in the understanding of the concept of geosequestration. The two hydrated hydroxy magnesium carbonate minerals artinite and dypingite have been studied by Raman spectroscopy. Intense bands are observed at 1092 cm-1 for artinite and at 1120 cm-1 for dypingite attributed CO32- ν1 symmetric stretching mode. The CO32- ν3 antisymmetric stretching vibrations are extremely weak and are observed at1412 and 1465 cm-1 for artinite and at 1366, 1447 and 1524 cm-1 for dypingite. Very weak Raman bands at 790 cm-1 for artinite and 800 cm-1 for dypingite are assigned to the CO32- ν2 out-of-plane bend. The Raman band at 700 cm-1 of artinite and at 725 and 760 cm-1 of dypingite are ascribed to CO32- ν2 in-plane bending mode. The Raman spectrum of artinite in the OH stretching region is characterised by two sets of bands: (a) an intense band at 3593 cm-1 assigned to the MgOH stretching vibrations and (b) the broad profile of overlapping bands at 3030 and 3229 cm-1 attributed to water stretching vibrations. X-ray diffraction studies show the minerals are disordered. This is reflected in the difficulty of obtaining Raman spectra of reasonable quality and explains why the Raman spectra of these minerals have not been previously or sufficiently described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The approach to remove green house gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals the formation of dypingite and artinite are possible; thus necessitating a study of such minerals. Two carbonate bearing minerals dypingite and artinite with a hydrotalcite related formulae have been characterised by a combination of infrared and near-infrared spectroscopy. The infrared spectra of both minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030 to 7235 cm-1 and 10490 to 10570 cm-1. Intense (CO3)2- symmetric and antisymmetric stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen bonded to the carbonate anion in the mineral structure. Split NIR bands at around 8675 and 11100 cm-1 indicates that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared spectroscopy is a somewhat unutilised technique for the study of minerals. The technique has the ability to determine water content, hydroxyl groups and transition metals. In this paper we show the application of NIR spectroscopy to the study of selected minerals. The structure and spectral properties of two Cu-tellurite minerals graemite and teineite are compared with bismuth containing tellurite mineral smirnite by the application of NIR and IR spectroscopy. The position of Cu2+ bands and their splitting in the electronic spectra of tellurites are in conformity with octahedral geometry distortion. The spectral pattern of smirnite resembles graemite and the observed band at 10855 cm-1 with a weak shoulder at 7920 cm-1 is identified as due to Cu2+ ion. Any transition metal impurities may be identified by their bands in this spectral region. Three prominent bands observed in the region of 7200-6500 cm-1 are the overtones of water whilst the weak bands observed near 6200 cm-1in tellurites may be attributed to the hydrogen bonding between (TeO3)2- and H2O. The observation of a number of bands centred at around 7200 cm-1 confirms molecular water in tellurite minerals. A number of overlapping bands in the low wavenumbers 4500-4000 cm-1 is the result of combinational modes of (TeO3)2−ion. The appearance of the most intense peak at 5200 cm-1 with a pair of weak bands near 6000 cm-1 is a common feature in all the spectra and is related to the combinations of OH vibrations of water molecules, and bending vibrations ν2 (δ H2O). Bending vibrations δ H2O observed in the IR spectra shows a single band for smirnite at 1610 cm-1. The resolution of this band into number of components is evidenced for non-equivalent types of molecular water in graemite and teineite. (TeO3)2- stretching vibrations are characterized by three main absorptions at 1080, 780 and 695 cm-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review focuses on the vibrational spectroscopy of the compounds and minerals containing the arsenite, antimonite and antimonate anions. The review collects and correlates the published data.