903 resultados para Total-energy calculations
Resumo:
We present a description of the Stem-Gerlach type experiments using only the concepts of classical electrodynamics and the Newton`s equations of motion. The quantization of the projections of the spin (or the projections of the magnetic dipole) is not introduced in our calculations. The main characteristic of our approach is a quantitative analysis of the motion of the magnetic atoms at the entrance of the magnetic field region. This study reveals a mechanism which modifies continuously the orientation of the magnetic dipole of the atom in a very short time interval, at the entrance of the magnetic field region. The mechanism is based on the conservation of the total energy associated with a magnetic dipole which moves in a non uniform magnetic field generated by an electromagnet. A detailed quantitative comparison with the (1922) Stem-Gerlach experiment and the didactical (1967) experiment by J.R. Zacharias is presented. We conclude, contrary to the original Stern-Gerlach statement, that the classical explanations are not ruled out by the experimental data.
Resumo:
Energy efficiency and renewable energy use are two main priorities leading to industrial sustainability nowadays according to European Steel Technology Platform (ESTP). Modernization efforts can be done by industries to improve energy consumptions of the production lines. These days, steel making industrial applications are energy and emission intensive. It was estimated that over the past years, energy consumption and corresponding CO2 generation has increased steadily reaching approximately 338.15 parts per million in august 2010 [1]. These kinds of facts and statistics have introduced a lot of room for improvement in energy efficiency for industrial applications through modernization and use of renewable energy sources such as solar Photovoltaic Systems (PV).The purpose of this thesis work is to make a preliminary design and simulation of the solar photovoltaic system which would attempt to cover the energy demand of the initial part of the pickling line hydraulic system at the SSAB steel plant. For this purpose, the energy consumptions of this hydraulic system would be studied and evaluated and a general analysis of the hydraulic and control components performance would be done which would yield a proper set of guidelines contributing towards future energy savings. The results of the energy efficiency analysis showed that the initial part of the pickling line hydraulic system worked with a low efficiency of 3.3%. Results of general analysis showed that hydraulic accumulators of 650 liter size should be used by the initial part pickling line system in combination with a one pump delivery of 100 l/min. Based on this, one PV system can deliver energy to an AC motor-pump set covering 17.6% of total energy and another PV system can supply a DC hydraulic pump substituting 26.7% of the demand. The first system used 290 m2 area of the roof and was sized as 40 kWp, the second used 109 m2 and was sized as 15.2 kWp. It was concluded that the reason for the low efficiency was the oversized design of the system. Incremental modernization efforts could help to improve the hydraulic system energy efficiency and make the design of the solar photovoltaic system realistically possible. Two types of PV systems where analyzed in the thesis work. A method was found calculating the load simulation sequence based on the energy efficiency studies to help in the PV system simulations. Hydraulic accumulators integrated into the pickling line worked as energy storage when being charged by the PV system as well.
Resumo:
The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage.
Resumo:
In a Nordic climate, space heating (SH) and domestic hot water (DHW) used in buildings constitute a considerable part of the total energy use in the country. For 2010, energy used for SH and DHW amounted to almost 90 TWh in Sweden which corresponds to 60 % of the energy used in the residential and service sector, or almost 24 % of the total final energy use for the country. Storing heat and cold with the use of thermal energy storage (TES) can be one way of increasing the energy efficiency of a building by opening up possibilities for alternative sources of heat or cold through a reduced mismatch between supply and demand. Thermal energy storage without the use of specific control systems are said to be passive and different applications using passive TES have been shown to increase energy efficiency and/or reduce power peaks of systems supplying the heating and cooling needs of buildings, as well as having an effect on the indoor climate. Results are however not consistent between studies and focus tend to be on the reduction of cooling energy or cooling power peaks. In this paper, passive TES introduced through an increased thermal mass in the building envelope to two single family houses with different insulation standard is investigated with building energy simulations. A Nordic climate is used and the focus of this study is both on the reduction of space heating demand and space heating power, as well as on reduction of excess temperatures in residential single family houses without active cooling systems. Care is taken to keep the building envelope characteristics other than the thermal mass equal for all cases so that any observations made can be derived to the change in thermal mass. Results show that increasing the sensible thermal mass in a single family house can reduce the heating demand only slightly (1-4 %) and reduce excess temperatures (temperatures above 24 degrees C) by up to 20 %. Adding a layer of PCM (phase change materials) to the light building construction can give similar reduction in heating demand and excess temperatures, however the phase change temperature is important for the results.
Resumo:
With the building sector accounting for around 40% of the total energy consumption in the EU, energy efficiency in buildings is and continues to be an important issue. Great progress has been made in reducing the energy consumption in new buildings, but the large stock of existing buildings with poor energy performance is probably an even more crucial area of focus. This thesis deals with energy efficiency measures that can be suitable for renovation of existing houses, particularly low-temperature heating systems and ventilation systems with heat recovery. The energy performance, environmental impact and costs are evaluated for a range of system combinations, for small and large houses with various heating demands and for different climates in Europe. The results were derived through simulation with energy calculation tools. Low-temperature heating and air heat recovery were both found to be promising with regard to increasing energy efficiency in European houses. These solutions proved particularly effective in Northern Europe as low-temperature heating and air heat recovery have a greater impact in cold climates and on houses with high heating demands. The performance of heat pumps, both with outdoor air and exhaust air, was seen to improve with low-temperature heating. The choice between an exhaust air heat pump and a ventilation system with heat recovery is likely to depend on case specific conditions, but both choices are more cost-effective and have a lower environmental impact than systems without heat recovery. The advantage of the heat pump is that it can be used all year round, given that it produces DHW. Economic and environmental aspects of energy efficiency measures do not always harmonize. On the one hand, lower costs can sometimes mean larger environmental impact; on the other hand there can be divergence between different environmental aspects. This makes it difficult to define financial subsidies to promote energy efficiency measures.
Resumo:
The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Prolapse-free basis sets suitable for four-component relativistic quantum chemical calculations are presented for the superheavy elements UP to (118)Uuo ((104)Rf, (105)Db, (106)Sg, (107)Bh, (108)Hs, (109)Mt, (110)Ds, (111)Rg, (112)Uub, (113)Uut, (114)Uuq, (115)Uup, (116)Uuh, (117)Uus, (118)Uuo) and Lr-103. These basis sets were optimized by minimizing the absolute values of the energy difference between the Dirac-Fock-Roothaan total energy and the corresponding numerical value at a milli-Hartree order of magnitude, resulting in a good balance between cost and accuracy. Parameters for generating exponents and new numerical data for some superheavy elements are also presented. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents simulations of the Electrofluid Dynamic energy conversion process in slender channel devices having very small particles (in both micro and nano scales) as charge carriers. Solutions are discussed for a system composed by coupled differential equations, which includes the equation for the total current along the channel, the equations for total energy and momentum of the mixture (gas and solid particles), the continuity equation and the equations for energy and momentum of a single particle. Results for suspended particles of higher diameters have been previously published in the Literature, but the simulations here presented exhibit an appreciable increase in the values for output currents.
Resumo:
This work presents simulations of the Electrofluid Dynamic energy conversion process in slender channel devices having very small particles (in both micro and nano scales) as charge carriers. Solutions are discussed for a system composed by coupled differential equations, which includes the equation for the total current along the channel, the equations for total energy and momentum of the mixture (gas and solid particles), the continuity equation and the equations for energy and momentum of a single particle. Results for suspended particles of higher diameters have been previously published in the Literature, but the simulations here presented exhibit an appreciable increase in the values for output currents.
Resumo:
The teleparallel versions of the Einstein and the Landau-Lifshitz energy-momentum complexes of the gravitational field are obtained. By using these complexes, the total energy of the universe, which includes the energy of both the matter and the gravitational fields, is then obtained. It is shown that in the case of a closed universe, the total energy vanishes independently of the pseudotensor used, as well as of the three dimensionless coupling constants of teleparallel gravity.
Resumo:
For certain models, the energy of the universe, which includes the energy of both matter and the gravitational fields, is obtained by using the quasi-local energy-momentum in teleparallel gravity. It is shown that, in the case of the Bianchi type I and II universes, not only the total energy but also the quasi-local energy-momentum for any region vanishes independently of the three dimensionless coupling constants of teleparallel gravity.
Resumo:
The approach called generator coordinate Hartree-Fock (GCHF) method is used in the selection of Gaussian basis set [25s18p for O ((3)p), 31s21p14d for Mn (S-6), and 33s22p16d9f for Pr ((4)J)] for atoms. The role of the weight functions in the assessment of the numerical integration range of the GCHF equations is shown. These basis sets are contracted to (25s18p/9s5p), (31s21p14d/9s6p4d), and (33s22pl6d9f118sl2p5d3f) by segmented contraction scheme of Dunning and they are utilized in calculations of Restricted-Open-HF (ROHF) Total and Orbital energies of the (MnO+1)-Mn-3 and (PrO+1)-Pr-1 fragments, to evaluate their quality in molecular studies. The addition of one d polarization function in the contracted (9s5p) basis set for O(P-3) atom and their application with the contracted (9s6p4d), (18s21p5d3f) basis sets for Mn (S-6) and Pr-Pr ((4)j) atoms lead to the electronic structure study of PrMnO3. The dipole moment, the total energy, and total atomic charges properties were calculated and were carried out at ROHF level with the [PrMnO3](2) fragment. The calculated values show that PrMnO3 does not present piezoelectric properties. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Generator Coordinate Hartree-Fock (GCHF) method is applied to generate extended (20s14p), (30s19p13d), and (31s23p18d) Gaussian basis sets for the 0, Mn, and La atoms, respectively. The role of the weight functions (WFs) in the assessment of the numerical integration range of the GCHF equations is shown. These basis sets are then contracted to [5s3p] and [11s6p6d] for 0 and Mn atoms, respectively, and [17s11p7d] for La atom by a standard procedure. For quality evaluation of contracted basis sets in molecular calculations, we have accomplished calculations of total and orbital energies in the Hartree-Fock-Roothaan (HFR) method for (MnO1+)-Mn-5 and (LaO1+)-La-1 fragments. The results obtained with the contracted basis sets are compared with values obtained with the extended basis sets. The addition of one d polarization function in the contracted basis set for 0 atom and its utilization with the contracted basis sets for Mn and La atoms leads to the calculations of dipole moment and total atomic charges of perovskite (LaMnO3). The calculations were performed at the HFR level with the crystal [LaMnO3](2) fragment in space group C-2v the values of dipole moment, total energy, and total atomic charges showed that it is reasonable to believe that LaMnO3 presents behaviour of piezoelectric material. (C) 2003 Elsevier B.V. All rights reserved.