952 resultados para Total variation
Resumo:
A technique to measure wall flow variation in Diesel Particle Filters (DPFs) is described. In a recent paper, it was shown how the flow distribution in DPFs could be measured in a non-destructive manner. This involved measuring the progressive dilution of a tracer gas introduced at the "outlet" channel upstream end. In the present paper, a significant further improvement to this technique is described, in which only a single probe is required, rather than the two of the previous technique. The single, traversable, probe consists of a controllable flow sink, and slightly downstream, a tracer gas supply. By controlling the sink flow rate such that a very small concentration of tracer gas is aspirated into it, the total flow up to that location in the channel is determined. Typical results showing the axial variation in the wall flow for known wall blockage cases are presented. It is suggested that this technique could be used to interpret the soot loading in the filter channels in a non-intrusive way.
Resumo:
Genetic and morphological characters of four hatchery population (Shambhuganj, Brahmaputra, Anudan and Bhai-Bhai) of Thai pangas, Pangasius hypophthalmus in Mymensingh region of Bangladesh was studied using morphological characters and allozyme markers from 29 November 2001 to 29 November 2002. A total of 14 morphometric and 6 meristic characters were verified, among which 3 morphometric (BDA, PELFL and HW) and 2 meristic characters (AFR, CFR) of Anudan hatchery population were found to be significantly higher (p>0.001) than those of the other three hatchery populations. Brahmaputra hatchery population was also significantly higher in two meristic characters (PCFR and CFR). For allozyme electrophoresis nine enzyme markers were used viz.: Esr-1*, G3pdh-2*, Gpi-1*, Gpi-2*, Ldh-1*, Ldh-2*, Mdh-1*, Mdh-2* and Pgm* where three loci (Esr-1*, Gpi-2* and Pgm*) were polymorphic (p>0.95) in Anudan and Brahmaputra hatchery populations. The mean proportion of polymorphic loci per population was higher (33.3%) in Brahmaputra and Anudan hatchery populations. Also the expected heterozygosity levels were 0.149 and 0.177 in Brahmaputra and Anudan hatchery populations, respectively. Based on Nei's (1972) genetic distances, the UPGMA dendrogram grouped the populations into two clusters. The Brahmaputra and Anudan populations are in one group; Shambhuganj, and Bhai-Bhai populations are in the second group. High genetic variation in Thai pangas was observed in the Brahmaputra and Anudan hatchery populations and less variation in the other two hatchery populations.
Resumo:
A total of 66 specimens of Niviventer andersoni with intact skulls was investigated on pelage characteristics and cranial morphometric variables. The data were subjected to principal component analyses as well as to discriminant analyses, and measurement
Resumo:
Benthic diatom communities were sampled monthly from May 2004 to May 2005 at four different sites in the littoral zone of Lake Donghu, a shallow eutrophic lake of China. The seasonal patterns of the total abundance, which were lowest in summer and highest in spring, were found at all sites. Total densities of diatom assemblages were significantly higher at hyper-eutrophic sites than at moderately eutrophic sites. Melosira varians was the most abundant species and dominant contributor to total abundance at all sites during spring, autumn and winter, whereas Achnanthes exigua dominated benthic diatom assemblages at the site with the highest nutrient concentrations during the summer. Achnanthes lanceolata var. dubia, Gomphonema parvulum, Navicula similis, Navicula verecunda and Nitzschia amphibia were generally observed at all sites throughout the year and were dominant at higher-nutrient sites. The abundance of ambient nutrients was probably responsible for the spatial variation in biomass, composition and diversity of benthic diatom assemblages, and lake water temperature was the major factor that controlled seasonal distribution.
Resumo:
The duration of occurrence of two morphological forms of Keratella cochlearis varied seasonally in Lake Donghu, a shallow eutrophic lake in China. The total lengths of both K cochlearis tecta and K cochlearis cochlearis were negatively correlated with the water temperature. Total length of K cochlearis tecta may also have been influenced by the degree of eutrophication or available food.
Resumo:
Seasonal variation of the kinetic parameters of total alkaline phosphatase activity (APA) was studied in a shallow Chinese freshwater lake (Donghu Lake). At the three experimental stations the values of V-max of APA were higher and the negative correlation between orthophosphate and the total APA specific activity (V-max/Chl.) was stronger during summer (from June to September) P depletion. At the same time, the values of Michaelis constant (K-m) of APA at the three stations decreased. Phytoplankton seem to compensate for their phosphorus deficiency not only by an increase in enzyme production but also by an improved ability to use low substrate concentrations. (C) 1997 Elsevier Science Ltd.
Resumo:
Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (>= 5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7%+/- 2% S.E.) were distinct from those at the alpine (23%+/- 6%) and subnival (21%+/- 6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots.
Resumo:
We described here a new method for the determination of total calcium in plasma. The method is based on the precipitation of calcium with excess oxalate and the measurement of residual oxalate by flow injection analysis with Ru(bpy)(3)(2+) electrochemiluminescent detection. It has the advantages of extremely stable reagent, user-friendly instrument, high selectivity, good analytical recovery, wide dynamic range, and nice correlation with atomic absorption spectroscopy. The calibration plot for calcium is linear over a concentration range from 0.5 mmol L-1 to 4.8 mmol L-1, which is wider than those obtained by most other methods. The analytical recoveries for plasma calcium are 98.4-101.2% with coefficients of variation (CVs) of 1.96-2.52%. The within-day CVs range from 0.76% to 0.95%, and between-day CVs were from 1.12% to 1.46%. The time for each injection is one minute. Because the proposed method can be readily carried out on increasingly popular instruments for Ru(bpy)(3)(2+) ECL immunoassays and DNA probe assays, Ru(bpy)32+ ECL method is suitable for routine clinical analysis of calcium.
Resumo:
The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae were investigated. In addition, the seasonal variation of inorganic elements in Sargassum kjellmanianum was also studied. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that PH and total alkalinity took on clear spatial variations in values with the minima in the low salinity region. Like salinity, transect distributions of PH and total alkalinity (TA) in a downriver direction had a sharp gradient each. These gradients appeared in such a sequence that the TA gradient was earlier than salinity and PH gradients, and the salinity gradient was earlier than the PH gradient. These distribution characteristics seemed to be strongly influenced by the mixing process of freshwater and seawater, for both PH and total alkalinity had significant linear relationships with salinity and temperature. For PH, phytoplankton activities also had a significant impact upon its spatial distribution. During a period of 48 h, PH and total alkalinity changed within wide ranges for every layer of the two anchor stations, namely, Stas 13 and 20, which were located at the mixed water mass and seawater mass, respectively. For both Stas 13 and 20, PH and TA fluctuation of every layer could be very wide during a 4 h period. As a whole, the data of the two anchor stations showed that neither variations in salinity and temperature nor phytoplankton activities were the main factors strongly influencing the total alkalinity temporal variability on a small time scale. The data of Sta. 20 implied that both salinity variation and phytoplankton activities had a significant influence on PH temporal variability, but the same conclusion could not be drawn from the data of Sta. 13.
Resumo:
The spatial distribution of stage-specific abundance and reproduction of the copepod Paracalanus parvus were studied from October 2005 to September 2006 in the Jiaozhou Bay. This copepod occurred continuously in this bay throughout the year. The species reached the lowest abundance in April and peaked in June. From October to December, distribution center mainly occurred in offshore water and at the mouth of the bay. In winter, early copepodites and adults gradually decreased and till February, most of the population was only comprised of CIV-CV stages. Overwintering copepodites matured in March and males tended to mature before female. From May to September, each stage occurred in the population and gradually reached high abundance. Temperature and chlorophyll a (Chl-a) concentration in the three stations can't clearly explain the seasonal variation in stage-specific abundance, so we surmised the important effect of the Yellow Sea. Egg production rate (EPR) reached its lowest in winter and peaked in June at 60.8 eggs female(-1) day(-1) in nearshore water. In the warming period, EPR in nearshore water was statistically higher and EPR > 10 eggs female(-1) day(-1) lasted longer than that in offshore water, showing the importance of nearshore water for recruitment of R parvus. Our study showed that EPR was positively related to temperature and total chlorophyll a in offshore water and mouth of the bay. In nearshore water, the relationships between EPR and temperature and Chl-a in three size fractions were not the same as those in offshore water, suggesting complicated ecosystem in such a eutrophic area in warming period. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We used random amplified polymorphic DNA markers (RAPDs) to assess genetic variation between- and within-populations of Anisodus tanguticus (Solanaceae), an endangered perennial endemic to the Qinghai-Tibetan Plateau with important medicinal value. We recorded a total of 92 amplified bands, using 12 RAPD primers, 76 of which (P = 82.61%) were polymorphic, and calculated values of H-t and H-sp of 0.3015 and 0.4459, respectively, suggesting a remarkably high rate of genetic variation at the species level. The average within-population diversity also appeared to be high, with P, H-e and H-pop values of 55.11%, 0.1948 and 0.2918, respectively. Analyses of molecular variance (AMOVA) showed that among- and between-population genetic variation accounted for 67.02% and 32.98% of the total genetic variation, respectively. In addition, Nei's coefficient of differentiation (G(ST)) was found to be high (0.35), confirming the relatively high level of genetic differentiation among the populations. These differentiation coefficients are higher than mean corresponding coefficients for outbreeding species, but lower than reported coefficients for some rare species from this region. The genetic structure of A. tanguticus has probably been shaped by its breeding attributes, biogeographic history and human impact due to collection for medicinal purposes. The observed genetic variations suggest that as many populations as possible should be considered in any planned in situ or ex situ conservation programs for this species.
Resumo:
Swertia przewalskii Pissjauk. (Gentianaceae) is a critically endangered and endemic plant of the Qinghai-Tibet Plateau in China. RAPD and ISSR analyses were carried out on a total of 63 individuals to assess the extent of genetic variation in the remaining three populations. Percentage of polymorphic bands was 94% (156 bands) for RAPD and 96% (222 bands) for ISSR. A pairwise distance measure calculated from the RAPD and ISSR data was used as input for analysis of molecular variance (AMOVA). AMOVA indicated that a high proportion of the total genetic variation (52% for RAPD and 56% for ISSR) was found among populations; pairwise Phi(ST) comparisons showed that the three populations examined were significantly different (p < 0.001). Significant genetic differentiation was found based on different measures (AMOVA and Hickory theta(B)) in S. przewalskii (0.52 on RAPD and 0.56 on ISSR; 0.46 on RAPD and 0.45 on ISSR). The differentiation of the populations corresponded to low average gene flow (0.28 based on RAPD and 0.31 based on ISSR), whereas genetic distance-based clustering and coalescent-based assignment analyses revealed significant genetic isolation among populations. Our results indicate that genetic diversity is independent of population size. We conclude that although sexual reproduction and gene flow between populations of S. przewalskii are very limited, they have preserved high levels of genetic diversity. The main factors responsible for the high level of difference among populations are the isolation and recent fragmentation under human disturbance.
Resumo:
Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.
Resumo:
Random amplified polymorphic DNA ( RAPD) markers were used to measure genetic diversity of Coelonema draboides ( Brassicaceae), a genus endemic to the Qilian Mountains of the Qinghai-Tibet Plateau. We sampled 90 individuals in 30 populations of Coelonema draboides from Datong and Huzhu counties of Qinghai Province in P. R. China. A total of 186 amplified bands were scored from the 14 RAPD primers, with a mean of 13.3 amplified bands per primer, and 87% ( 161 bands) polymorphic bands (PPB) was found. Analysis of molecular variance (AMOVA) shows that a large proportion of genetic variation (84.2%) resides among individuals within populations, while only 15.8% resides among populations. The species shows higher genetic diversity between individuals than other endemic and endangered plants. The RAPDs provide a useful tool for assessing genetic diversity of rare, endemic species and for resolving relationships among populations. The results show that the genetic diversity of this species is high, possibly allowing it to adapt more easily to environmental variations. The main factor responsible for the high level of differentiation within populations and the low level of diversity among populations is probably the outcrossing and long-lived nature of this species. Some long-distance dispersal, even among far separated populations, is also a crucial determinant for the pattern of genetic variation in the species. This distributive pattern of genetic variation of C. draboides populations provides important baseline data for conservation and collection strategies for the species. It is suggested that only populations in different habitats should be studied and protected, not all populations, so as to retain as much genetic diversity as possible.