888 resultados para Titania-silica
Resumo:
Surface chemistry and the intrinsic porous architectures of porous substrates play a major role in the design of drug delivery systems. An interesting example is the drug elution characteristic from hydrothermally synthesised titania nanotubes with tunable surface chemistry. The variation in release rates of Ibuprofen (IBU) is largely influenced by the nature of the functional groups on titania nanotubes and pH of suspending medium. To elucidate the extent of interaction between the encapsulated IBU and the functional groups on titania nanotubes, the release profiles have been modelled with an empirical Hill equation. The analysis aided in establishing a probable mechanism for the release of IBU from the titania nanotubes. The study of controlled drug release from TiO2 has wider implication in the context of biomedical engineering. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, alpha-PbO2-type, and pyrite-type for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase. (C) 2014 AIP Publishing LLC.
Resumo:
Simulations using Ansys Fluent 6.3.26 have been performed to look into the adsorption characteristics of a single silica gel particle exposed to saturated humid air streams at Re=108 & 216 and temperature of 300K. The adsorption of the particle has been modeled as a source term in the species and the energy equations using a Linear Driving Force (LDF) equation. The interdependence of the thermal and the water vapor concentration field has been analysed. This work is intended to aid in understanding the adsorption effects in silica gel beds and in their efficient design. (C) 2013 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Resumo:
Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The nonaqueous route and ball milling-induced titania transformation is briefly outlined; moreover, the lacunae in understanding the concepts and future prospects in this exciting field are suggested.
Resumo:
Lipid coated mesoporous silica nanoparticle (L-MSN) were synthesized for oral delivery of ciprofloxacin for intracellular elimination of Salmonella pathogen. The particle size was found to be between 50-100 nm with a lipid coat of approximately 5 nm thickness. The lipid coating was achieved by sonication of liposomes with the MSN particles and evaluated by CLSMand FTIR studies. The L-MSN particles exhibited lower cytotoxicity compared to bare MSN particles. Ciprofloxacin, a fluoroquinolone antibiotic, loaded into the L-MSN particles showed enhanced antibacterial activity against free drug in in vitro assays. The lipid coat was found to aid in intravacuolar targeting of the drug cargo as observed by confocal microscopy studies. We also observed that a lower dose of antibiotic was sufficient to clear the pathogen from mice and increase their survivability using the L-MSN oral delivery system.
Resumo:
A label-free biosensor has been fabricated using a reduced graphene oxide (RGO) and anatase titania (ant-TiO2) nanocomposite, electrophoretically deposited onto an indium tin oxide coated glass substrate. The RGO-ant-TiO2 nanocomposite has been functionalized with protein (horseradish peroxidase) conjugated antibodies for the specific recognition and detection of Vibrio cholerae. The presence of Ab-Vc on the RGO-ant-TiO2 nanocomposite has been confirmed using electron microscopy, Fourier transform infrared spectroscopy and electrochemical techniques. Electrochemical studies relating to the fabricated Ab-Vc/RGO-ant-TiO2/ITO immunoelectrode have been conducted to investigate the binding kinetics. This immunosensor exhibits improved biosensing properties in the detection of Vibrio cholerae, with a sensitivity of 18.17 x 10(6) F mol(-1) L-1 m(-2) in the detection range of 0.12-5.4 nmol L-1, and a low detection limit of 0.12 nmol L-1. The association (k(a)), dissociation (k(d)) and equilibrium rate constants have been estimated to be 0.07 nM, 0.002 nM and 0.41 nM, respectively. This Ab-Vc/RGO-ant-TiO2/ITO immunoelectrode could be a suitable platform for the development of compact diagnostic devices.
Resumo:
This work proposes the fabrication of a novel targeted drug delivery system based on mesoporous silica-biopolymer hybrids that can release drugs in response to biological stimuli present in cancer cells. The proposed system utilizes mesoporous silica nanoparticles as a carrier to host the drug molecules. A bio-polymer cap is attached onto these particles which serves the multiple functions of drug retention, targeting and bio-responsive drug release. The biopolymer chondroitin sulphate used here is a glycosaminoglycan that can specifically bind to receptors over-expressed in cancer cells. This molecule also possesses the property of disintegrating upon exposure to enzymes over-expressed in cancer cells. When these particles interact with cancer cells, the chondroitin sulphate present on the surface recognizes and attaches onto the CD44 receptors facilitating the uptake of these particles. The phagocytised particles are then exposed to the degradative enzymes, such as hyaluronidase present inside the cancer cells, which degrade the cap resulting in drug release. By utilizing a cervical cancer cell line we have demonstrated the targetability and intracellular delivery of hydrophobic drugs encapsulated in these particles. It was observed that the system was capable of enhancing the anticancer activity of the hydrophobic drug curcumin. Overall, we believe that this system might prove to be a valuable candidate for targeted and bioresponsive drug delivery.
Resumo:
The paper presents a simulation study of loose cylindrically shaped particles packed within a copper plate and aluminum fins. The model presented solves coupled heat and mass transfer equations using the finite volume method based on ANSY S FLUENT medium. Three different arrangements of cylindrical particles are considered. The model is validated with experimental data. It is found that the arrangements which represented monolayer configurations are only marginally better in heat transfer and uptake efficiency than the tri-layer configuration in the presence of fins. However, there is an appreciable difference in the uptake curve between monoand tri-layer configurations in the absence of fins. Finally, it is found that the fin pitch also plays an important role in determining the time constant for the adsorber design.
Resumo:
In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1 mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures at 6 h, the sizes of anatase (1 mg/L), rutile NPs (1 mg/L), and binary mixture (1, 1 mg/L) were 948.83 +/- 35.01 nm, 555.74 +/- 19.93 nm, and 1620.24 +/- 237.87 nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The first objective of this paper is to show that a single-stage adsorption based cooling-cum-desalination system cannot be used if air cooled heat rejection is used under tropical conditions. This objective is achieved by operating a silica gel + water adsorption chiller first in a single-stage mode and then in a 2-stage mode with 2 beds/stage in each case. The second objective is to improve upon the simulation results obtained earlier by way of empirically describing the thermal wave phenomena during switching of operation of beds between adsorption and desorption and vice versa. Performance indicators, namely, cooling capacity, coefficient of performance and desalinated water output are extracted for various evaporator pressures and half cycle times. The improved simulation model is found to interpret experimental results more closely than the earlier one. Reasons for decline in performance indicators between theoretical and actual scenarios are appraised. (C) 2015 Elsevier Ltd and IIR. All rights reserved.
Resumo:
Colloidal systems offer an effective medium to micro-engineer complex structures without involving sophisticated fabrication procedures. This article presents a deployment strategy of multiple droplets of different colloidal composition and utilizes the inherent capillary flow driven self assembly of nanoparticles to construct stacks of multiple materials on a given glass substrate. Here we used aqueous nano-crystalline titania and nano-amorphous silica solutions as the two materials. Initially, a pure nanotitania (nanosilica) droplet is deployed and allowed to dry partially. Subsequently, a second droplet of pure nanosilica (nanotitania) is deployed co-axially on the partially dried precipitate. The proposed deployment strategy allowed significant morphological differences when the deployment order of nanosilica and nanotitania were interchanged. Compositional analysis performed using EDX (Energy Dispersive X-ray spectroscopy) showed preferential deposition of nanosilica and nanotitania along the radial as well as the axial plane of the final deposit pattern. The underlying mechanism for such a phenomenon could be attributed to the contact line dynamics of a sessile double droplet. We also observe heteroaggregation of the nanosilica-nanotitania interaction along a narrow interface which resulted in nanotitania particles clustering into isolated islands embedded into a matrix of nanosilica particles. Overall, this work elucidates the evaporation driven dynamics of a mixed colloidal system which displays both macroscopic as well as microscopic phenomena. Such a system could be used to generate ordered arrays of functional materials with engineered micro to nano-scale properties.
Surface modification of titania aerogel films by oxygen plasma treatment for enhanced dye adsorption
Resumo:
Titania aerogels were synthesized by sol-gel route followed by ambient pressure subcritical drying technique. The aerogels synthesized in the present work possess a maximum surface area of 252 m(2)/g. The pore size distribution is between 2 and 30 nm which confirms their mesoporosity. The oxygen plasma treatment on titania aerogel thin films improved the surface area up to 273 m(2)/g and produced additional hydrophilic groups on the surface. It is confirmed by BET surface area, XPS and thermal analysis in conjunction with dye adsorption studies. After plasma treatment the dye adsorption capacity was increased 2.5 times higher than that of untreated aerogel film. The increased surface area and the hydrophilic groups generated on the titania aerogel surface during plasma treatment are responsible for enhanced dye adsorption. The overall nanoporous morphology of titania aerogel is preserved after plasma treatment. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the instrumentation and control architecture for a laboratory based two-stage 4-bed silica gel + water adsorption system. The system consists of primarily two fluids: refrigerant (water vapour) and heat transfer fluid (water) flowing through various components. Heat input to the system is simulated using multiple heaters and ambient air is used as the heat sink. The laboratory setup incorporates a real time National Instruments (NI) controller to control several digital and analog valves, heaters, pumps and fans along with simultaneous data acquisition from various flow, pressure and temperature sensors. The paper also presents in detail the various automated and manual tasks required for successful operation of the system. Finally the system pressure and temperature dynamics are reported and its performance evaluated for various cycle times. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
An innovative technique to obtain high-surface-area mesostructured carbon (2545m(2)g(-1)) with significant microporosity uses Teflon as the silica template removal agent. This method not only shortens synthesis time by combining silica removal and carbonization in a single step, but also assists in ultrafast removal of the template (in 10min) with complete elimination of toxic HF usage. The obtained carbon material (JNC-1) displays excellent CO2 capture ability (ca. 26.2wt% at 0 degrees C under 0.88bar CO2 pressure), which is twice that of CMK-3 obtained by the HF etching method (13.0wt%). JNC-1 demonstrated higher H-2 adsorption capacity (2.8wt%) compared to CMK-3 (1.2wt%) at -196 degrees C under 1.0bar H-2 pressure. The bimodal pore architecture of JNC-1 led to superior supercapacitor performance, with a specific capacitance of 292Fg(-1) and 182Fg(-1) at a drain rate of 1Ag(-1) and 50Ag(-1), respectively, in 1m H2SO4 compared to CMK-3 and activated carbon.
Resumo:
This article presents a theoretical analysis of heat and mass transfer in a silica gel + water adsorption process using scaling principles. A two-dimensional columnar packed adsorber domain is chosen for the study, with side and bottom walls cooled and vapour inlet from the top. The adsorption process is initiated from the cold walls with a temperature jump of 15 K, whereas the water vapour supply is maintained at a constant inlet pressure of 1 kPa. The first part of the study is dedicated to deriving relevant scales for the adsorption process by an order of magnitude analysis of energy, continuity and momentum equations. In the latter part, the derived scales are compared with the outcome of numerical studies performed for various domain widths and aspect ratio of bed. A good correlation between scaling and simulation results is observed, thereby validating the scaling approach. (C) 2015 Elsevier Ltd. All rights reserved.