988 resultados para Tissue Conditioning (Dental)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aimof this study was to evaluate the stress distribution on bone tissue with a single prosthesis supported by implants of large and conventional diameter and presenting different veneering materials using the 3-D finite elementmethod. Sixteenmodels were fabricated to reproduce a bone block with implants, using two diameters (3.75 × 10 mmand 5.00 × 10 mm), four different veneering materials (composite resin, acrylic resin, porcelain, and NiCr crown), and two loads (axial (200 N) and oblique (100 N)). For data analysis, the maximum principal stress and vonMises criterion were used. For the axial load, the cortical bone in allmodels did not exhibit significant differences, and the trabecular bone presented higher tensile stresswith reduced implant diameter. For the oblique load, the cortical bone presented a significant increase in tensile stress on the same side as the loading for smaller implant diameters. The trabecular bone showed a similar but more discreet trend. There was no difference in bone tissue with different veneering materials. The veneering material did not influence the stress distribution in the supporting tissues of single implant-supported prostheses. The large-diameter implants improved the transference of occlusal loads to bone tissue and decreased stress mainly under oblique loads.Oblique loading was more detrimental to distribution stresses than axial loading. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary stability of dental implants is fundamental for osseointegration. Therefore, this study aimed to assess the correlation between insertion torque (IT) and resonance frequency analysis (RFA) of implants placed in mandibles and maxillas of different bone densities. Eighty dental implants were placed in maxillas and mandibles, and IT and the implant stability quotient (ISQ) were measured at the time of implant insertion. Bone density was assessed subjectively by the Lekholm and Zarb index. The type I and II densities were grouped together (group A)as were the type III and IV densities (group B). The IT in group A was higher (Student t test, P = .0013) than in group B (46.27 +/- 18.51 Ncm, 33.62 +/- 14.74 Ncm, respectively). The implants placed in group A showed higher ISQ (Student t test, P = .0004) than those placed in group B (70.09 +/- 7.50, 63.66 +/- 8.00, respectively). A significant correlation between IT and the ISQ value was observed for group A (Pearson correlation test; r = 0.35; P = .0213) and for group B (r = 0.37; P = .0224). Within the limitations of this study, it was possible to conclude that there is a correlation between IT and RFA of implants placed in mandibles and maxillas of different bone densities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compared the effect of physicochemical surface conditioning methods on the adhesion of bis-GMA-based resin cement to particulate filler composite (PFC) used for indirect dental restorations. PFC blocks (N (block)=54, n (block)=9 per group) were polymerized and randomly subjected to one of the following surface conditioning methods: a) No conditioning (Control-C), b) Hydrofluoric acid (HF)etching for 60s (AE60), c) HF for 90s (AE90), d) HF for 120s (AE120), e) HF for 180s (AE180), and f) air-abrasion with 30 mu m silica-coated alumina particles (AB). The conditioned surfaces were silanized with an MPS silane, and an adhesive resin was applied. Resin composite blocks were bonded to PFC using resin cement and photo-polymerized. PFC-cement-resin composite blocks were cut under coolant water to obtain bar specimens (1mmx0.8mm). Microtensile bond strength test (mu TBS)was performed in a universal testing machine (1mm/min). After debonding, failure modes were classified using stereomicroscopy. Surface characterization was performed on a set of separate specimen surfaces using Scanning Electron Microscopy (SEM), X-Ray Dispersive Spectroscopy (XDS), X-Ray Photoelectron Spectroscopy (XPS), and Fourier Transform-Raman Spectroscopy (FT-RS). Mean mu TBS (MPa) of C (35.6 +/- 4.9) was significantly lower than those of other groups (40.2 +/- 5.6-47.4 +/- 6.1) (p<0.05). The highest mu TBS was obtained in Group AB (47.4 +/- 6.1). Prolonged duration of HF etching increased the results (AE180: 41.9 +/- 7), but was not significantly different than that of AB (p>0.05). Failure types were predominantly cohesive in PFC (34 out of 54) followed by cohesive failure in the cement (16 out of 54). Degree of conversion (DC) of the PFC was 63 +/- 10%. SEM analysis showed increased irregularities on PFC surfaces with the increased etching time. Chemical surface analyses with XPS and FT-RS indicated 11-70% silane on the PFC surfaces that contributed to improved bond strength compared to Group C that presented 5% silane, which seemed to be a threshold. Group AB displayed 83% SiO2 and 17% silane on the surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The purpose of this study is to analyze the tension distribution on bone tissue around implants with different angulations (0 degrees, 17 degrees, and 30 degrees) and connections (external hexagon and tapered) through the use of three-dimensional finite element and statistical analyses.Methods: Twelve different configurations of three-dimensional finite element models, including three inclinations of the implants (0 degrees, 17 degrees, and 30 degrees), two connections (an external hexagon and a tapered), and two load applications (axial and oblique), were simulated. The maximum principal stress values for cortical bone were measured at the mesial, distal, buccal, and lingual regions around the implant for each analyzed situation, totaling 48 groups. Loads of 200 and 100 N were applied at the occlusal surface in the axial and oblique directions, respectively. Maximum principal stress values were measured at the bone crest and statistically analyzed using analysis of variance. Stress patterns in the bone tissue around the implant were analyzed qualitatively.Results: The results demonstrated that under the oblique loading process, the external hexagon connection showed significantly higher stress concentrations in the bone tissue (P < 0.05) compared with the tapered connection. Moreover, the buccal and mesial regions of the cortical bone concentrated significantly higher stress (P < 0.005) to the external hexagon implant type. Under the oblique loading direction, the increased external hexagon implant angulation induced a significantly higher stress concentration (P = 0.045).Conclusions: The study results show that: 1) the oblique load was more damaging to bone tissue, mainly when associated with external hexagon implants; and 2) there was a higher stress concentration on the buccal region in comparison to all other regions under oblique load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. In dental rehabilitations that involve implants, the number of implants is sometimes smaller than the number of lost teeth. This fact can affect the biomechanical behavior and success of the implants.Purpose. The purpose of this study was to investigate the mechanical behavior of different implant positions in the rehabilitation of the anterior maxilla.Material and methods. Three-dimensional models of the maxilla were created based on computed tomography images for 3 different anterior prosthetic rehabilitations. In group IL, the implants were placed in the lateral incisor positions with pontics in the central incisor positions; in group IC, the implants were in the central incisor positions with cantilevers in the lateral incisor positions; and, in group ILIC, one implant was in a lateral incisor position and one was in a central incisor position, with a pontic and a cantilever in the remaining positions. A 150 N load was distributed and applied at the center of the palatal surface of each tooth at a 45-degree angle to the long axis of the tooth. The resulting stress-strain distribution was analyzed for each group.Results. The lowest displacement of the prosthetic structure was observed in group IC, although the same group exhibited the largest displacement of the bone tissue. In the bone tissue, the von Mises stress was mainly observed in the cortical bone in all groups. The maximum value of the von Mises stress shown in the cortical tissue was 35 MPa in the implant that neighbors the cantilever in group ILIC. The maximum von Mises stress in the trabecular bone was 3.5 MPa.Conclusion. The prosthetic configuration of group IC limited the displacement of the prosthetic structure but led to greater displacement of the bone structure. The use of a cantilever increased the stress concentration in the implant and in the bone structure adjacent to the cantilever under the conditions studied here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the current review was to investigate the implications of the surface and bulk properties of abutment implants and their degradation in relation to periodontal health. The success of dental implants is no longer a challenge for dentistry. The scientific literature presents several types of implants that are specific for each case. However, in cases of prosthetics components, such as abutments, further research is needed to improve the materials used to avoid bacterial adhesion and enhance contact with epithelial cells. The implanted surfaces of the abutments are composed of chemical elements that may degrade under different temperatures or be damaged by the forces applied onto them. This study showed that the resulting release of such chemical elements could cause inflammation in the periodontal tissue. At the same time, the surface characteristics can be altered, thus favoring biofilm development and further increasing the inflammation. Finally, if not treated, this inflammation can cause the loss of the implant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate (1% w/w) to the culture medium before the bacteria are inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate influences in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between chondroitin sulfate, bacterial cellulose and calcium phosphate and XRD demonstrated amorphous calcium phosphate and carbonated apatite on bacterial cellulose nanocomposites. SEM images confirmed incorporation of calcium phosphate in bacterial celluloe nanocomposite surface and uniform spherical calcium phosphate particles. Future experiments with cells adhesion and viability are in course.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To study bony and soft tissue changes at implants installed in alveolar bony ridges of different widths.Material and methods: In 6 Labrador dogs, the mandibular premolars and first molars were extracted, and a buccal defect was created in the left side at the third and fourth premolars by removing the buccal bone and the inter-radicular and interdental septa. Three months after tooth extraction, full-thickness mucoperiosteal flaps were elevated, and implants were installed, two at the reduced (test) and two at the regular-sized ridges (control). Narrow or wide abutments were affixed to the implants. After 3 months, biopsies were harvested, and ground sections prepared for histological evaluation.Results: A higher vertical buccal bony crest resorption was found at the test (1.5 +/- 0.7 mm and 1.0 +/- 0.7 mm) compared to the control implants (1.0 +/- 0.5 mm and 0.7 +/- 0.4 mm), for both wide and narrow abutment sites. A higher horizontal alveolar resorption was identified at the control compared to the test implants. The difference was significant for narrow abutment sites. The peri-implant mucosa was more coronally positioned at the narrow abutment, in the test sites, while for the control sites, the mucosal adaptation was more coronal at the wide abutment sites. These differences, however, did not reach statistical significance.Conclusions: Implants installed in regular-sized alveolar ridges had a higher horizontal, but a lower vertical buccal bony crest resorption compared to implants installed in reduced alveolar ridges. Narrow abutments in reduced ridges as well as wide abutments in regular-sized ridges yielded less soft tissue recession compared to their counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate and hyaluronic acid (1% w/w) to the culture medium before the bacteria is inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate and hyaluronic acid effects in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between bacterial cellulose nanobiocomposites and calcium phosphate. XRD demonstrated amorphous calcium phosphate, carbonated apatite and calcium chloride on bacterial cellulose nanobiocomposites. Monocalcium phosphate monohydrate phase formation [Ca(H2PO4)(2)center dot H2O] are here attested by FTIR, XRD and Ca/P relation.