845 resultados para Timing task
Resumo:
Multiprocessors, particularly in the form of multicores, are becoming standard building blocks for executing reliable software. But their use for applications with hard real-time requirements is non-trivial. Well-known realtime scheduling algorithms in the uniprocessor context (Rate-Monotonic [1] or Earliest-Deadline-First [1]) do not perform well on multiprocessors. For this reason the scientific community in the area of real-time systems has produced new algorithms specifically for multiprocessors. In the meanwhile, a proposal [2] exists for extending the Ada language with new basic constructs which can be used for implementing new algorithms for real-time scheduling; the family of task splitting algorithms is one of them which was emphasized in the proposal [2]. Consequently, assessing whether existing task splitting multiprocessor scheduling algorithms can be implemented with these constructs is paramount. In this paper we present a list of state-of-art task-splitting multiprocessor scheduling algorithms and, for each of them, we present detailed Ada code that uses the new constructs.
Resumo:
In this cross-sectional study we analyzed, whether team climate for innovation mediates the relationship between team task structure and innovative behavior, job satisfaction, affective organizational commitment, and work stress. 310 employees in 20 work teams of an automotive company participated in this study. 10 teams had been changed from a restrictive to a more self-regulating team model by providing task variety, autonomy, team-specific goals, and feedback in order to increase team effectiveness. Data support the supposed causal chain, although only with respect to team innovative behavior all required effects were statistically significant. Longitudinal designs and larger samples are needed to prove the assumed causal relationships, but results indicate that implementing self-regulating teams might be an effective strategy for improving innovative behavior and thus team and company effectiveness.
Resumo:
A new algorithm is proposed for scheduling preemptible arbitrary-deadline sporadic task systems upon multiprocessor platforms, with interprocessor migration permitted. This algorithm is based on a task-splitting approach - while most tasks are entirely assigned to specific processors, a few tasks (fewer than the number of processors) may be split across two processors. This algorithm can be used for two distinct purposes: for actually scheduling specific sporadic task systems, and for feasibility analysis. Simulation- based evaluation indicates that this algorithm offers a significant improvement on the ability to schedule arbitrary- deadline sporadic task systems as compared to the contemporary state-of-art. With regard to feasibility analysis, the new algorithm is proved to offer superior performance guarantees in comparison to prior feasibility tests.
Resumo:
Due to the growing complexity and dynamism of many embedded application domains (including consumer electronics, robotics, automotive and telecommunications), it is increasingly difficult to react to load variations and adapt the system's performance in a controlled fashion within an useful and bounded time. This is particularly noticeable when intending to benefit from the full potential of an open distributed cooperating environment, where service characteristics are not known beforehand and tasks may exhibit unrestricted QoS inter-dependencies. This paper proposes a novel anytime adaptive QoS control policy in which the online search for the best set of QoS levels is combined with each user's personal preferences on their services' adaptation behaviour. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves as the algorithms are given more time to run, with a minimum overhead when compared against their traditional versions.
Resumo:
Environment monitoring has an important role in occupational exposure assessment. However, due to several factors is done with insufficient frequency and normally don´t give the necessary information to choose the most adequate safety measures to avoid or control exposure. Identifying all the tasks developed in each workplace and conducting a task-based exposure assessment help to refine the exposure characterization and reduce assessment errors. A task-based assessment can provide also a better evaluation of exposure variability, instead of assessing personal exposures using continuous 8-hour time weighted average measurements. Health effects related with exposure to particles have mainly been investigated with mass-measuring instruments or gravimetric analysis. However, more recently, there are some studies that support that size distribution and particle number concentration may have advantages over particle mass concentration for assessing the health effects of airborne particles. Several exposure assessments were performed in different occupational settings (bakery, grill house, cork industry and horse stable) and were applied these two resources: task-based exposure assessment and particle number concentration by size. The results showed interesting results: task-based approach applied permitted to identify the tasks with higher exposure to the smaller particles (0.3 μm) in the different occupational settings. The data obtained allow more concrete and effective risk assessment and the identification of priorities for safety investments.
Resumo:
We address the problem of coordinating two non-holonomic mobile robots that move in formation while transporting a long payload. A competitive dynamics is introduced that gradually controls the activation and deactivation of individual behaviors. This process introduces (asymmetrical) hysteresis during behavioral switching. As a result behavioral oscillations, due to noisy information, are eliminated. Results in indoor environments show that if parameter values are chosen within reasonable ranges then, in spite of noise in the robots communi- cation and sensors, the overall robotic system works quite well even in cluttered environments. The robots overt behavior is stable and smooth.
Resumo:
Introdução: Por mais de uma década assumiu-se que o transverso abdominal/oblíquo interno (TrA/OI) se comportava como um ventre muscular único, pré-ativando-se bilateralmente de forma simultânea para aumentar a stiffness da coluna lombar, conferindo-lhe estabilidade segmentar durante o movimento de um dos membros superiores. À luz dos estudos atuais sabe-se que tal mecanismo não ocorre, uma vez que o TrA/OI apresenta uma ativação por mecanismo de feedforward predominantemente contralateral ao membro superior movido. Apesar de morfologicamente o TrA/OI do lado não-dominante ser mais hipertrofiado do que o do lado dominante, nada se sabe acerca da influência da dominância nos timings ativação do TrA/OI. Objectivos: Confirmar se o TrA/OI tem um timing de ativação assimétrico durante o movimento rápido de flexão do membro superior (MRMS). Pretende-se ainda avaliar se o timing de ativação do TrA/OI é influenciado pela dominância de lateralidade manual. Métodos: Efectuou-se um estudo observacional descritivo, transversal e duplamente cego com 32 atletas de futebol voluntários com membro superior direito dominante, colocando-os apenas num grupo. Procedeu-se à recolha do sinal eletromiográfico de forma a avaliar os timings de ativação do TrA/OI bilateralmente aquando dos movimentos rápidos de flexão de ambos os membros superiores, à vez. Todos os dados foram tratados estatisticamente com o programa SPSS, versão 20.0 para Mac OS, com um grau de significância de 0,05. Resultados: Verificaram-se diferenças nos timings de ativação dos TrA/OI direito e esquerdo durante os MRMS direito e esquerdo (Teste ANOVA medidas repetidas: F=291,087; p<0,001). O timing de ativação do TrA/OI direito – 29,15(13,15)ms – foi superior ao esquerdo – 4,71(17,32)ms – durante MRMS direito (Teste Post Hoc Bonferroni: p<0,001). O timing de ativação do TrA/OI esquerdo – 31,98(12,50)ms – foi superior ao direito – 12,20(17,40)ms – durante MRMS esquerdo (p<0,001). O timing de ativação do TrA/IO direito aquando do MRMS direito foi superior ao observado durante MRMS esquerdo (p<0,001). O contrário sucedeu em relação ao timing ativação do TrA/IO esquerdo (p<0,001). O timing de ativação do TrA/IO esquerdo no MRMS direito foi inferior ao do TrA/IO direito aquando do movimento com o membro esquerdo (p<0,001). O TrA/IO direito possuiu um timing de ativação no MRMS direito inferior ao do TrA/IO esquerdo aquando do movimento com o membro esquerdo (p<0,001). Conclusão: Através deste estudo pôde-se concluir que o TrA/OI contralateral ao MRMS apresenta um timing de ativação inferior ao ipsilateral e ainda que durante o MRMS dominante o TrA/OI esquerdo e direito apresentam um timing de ativação inferior ao ocorrido durante o MRMS não-dominante.
Resumo:
Animal Cognition, V.6, pp. 259–267
Resumo:
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising two different types of processors—such a platform is referred to as two-type platform. We present two low degree polynomial time-complexity algorithms, SA and SA-P, each providing the following guarantee. For a given two-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then (i) using SA, it is guaranteed to find such an assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which processors are 1+α times faster. The parameter 0<α≤1 is a property of the task set; it is the maximum of all the task utilizations that are no greater than 1. We evaluate average-case performance of both the algorithms by generating task sets randomly and measuring how much faster processors the algorithms need (which is upper bounded by 1+α/2 for SA and 1+α for SA-P) in order to output a feasible task assignment (intra-migrative for SA and non-migrative for SA-P). In our evaluations, for the vast majority of task sets, these algorithms require significantly smaller processor speedup than indicated by their theoretical bounds. Finally, we consider a special case where no task utilization in the given task set can exceed one and for this case, we (re-)prove the performance guarantees of SA and SA-P. We show, for both of the algorithms, that changing the adversary from intra-migrative to a more powerful one, namely fully-migrative, in which tasks can migrate between processors of any type, does not deteriorate the performance guarantees. For this special case, we compare the average-case performance of SA-P and a state-of-the-art algorithm by generating task sets randomly. In our evaluations, SA-P outperforms the state-of-the-art by requiring much smaller processor speedup and by running orders of magnitude faster.
Resumo:
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising a constant number (denoted by t) of distinct types of processors—such a platform is referred to as a t-type platform. We present two algorithms, LPGIM and LPGNM, each providing the following guarantee. For a given t-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet their deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then: (i) LPGIM succeeds in finding such an assignment where the same restriction on task migration applies (intra-migrative) but given a platform in which only one processor of each type is 1 + α × t-1/t times faster and (ii) LPGNM succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which every processor is 1 + α times faster. The parameter α is a property of the task set; it is the maximum of all the task utilizations that are no greater than one. To the best of our knowledge, for t-type heterogeneous multiprocessors: (i) for the problem of intra-migrative task assignment, no previous algorithm exists with a proven bound and hence our algorithm, LPGIM, is the first of its kind and (ii) for the problem of non-migrative task assignment, our algorithm, LPGNM, has superior performance compared to state-of-the-art.
Resumo:
Hard real- time multiprocessor scheduling has seen, in recent years, the flourishing of semi-partitioned scheduling algorithms. This category of scheduling schemes combines elements of partitioned and global scheduling for the purposes of achieving efficient utilization of the system’s processing resources with strong schedulability guarantees and with low dispatching overheads. The sub-class of slot-based “task-splitting” scheduling algorithms, in particular, offers very good trade-offs between schedulability guarantees (in the form of high utilization bounds) and the number of preemptions/migrations involved. However, so far there did not exist unified scheduling theory for such algorithms; each one was formulated in its own accompanying analysis. This article changes this fragmented landscape by formulating a more unified schedulability theory covering the two state-of-the-art slot-based semi-partitioned algorithms, S-EKG and NPS-F (both fixed job-priority based). This new theory is based on exact schedulability tests, thus also overcoming many sources of pessimism in existing analysis. In turn, since schedulability testing guides the task assignment under the schemes in consideration, we also formulate an improved task assignment procedure. As the other main contribution of this article, and as a response to the fact that many unrealistic assumptions, present in the original theory, tend to undermine the theoretical potential of such scheduling schemes, we identified and modelled into the new analysis all overheads incurred by the algorithms in consideration. The outcome is a new overhead-aware schedulability analysis that permits increased efficiency and reliability. The merits of this new theory are evaluated by an extensive set of experiments.
Resumo:
The multiprocessor scheduling scheme NPS-F for sporadic tasks has a high utilisation bound and an overall number of preemptions bounded at design time. NPS-F binpacks tasks offline to as many servers as needed. At runtime, the scheduler ensures that each server is mapped to at most one of the m processors, at any instant. When scheduled, servers use EDF to select which of their tasks to run. Yet, unlike the overall number of preemptions, the migrations per se are not tightly bounded. Moreover, we cannot know a priori which task a server will be currently executing at the instant when it migrates. This uncertainty complicates the estimation of cache-related preemption and migration costs (CPMD), potentially resulting in their overestimation. Therefore, to simplify the CPMD estimation, we propose an amended bin-packing scheme for NPS-F allowing us (i) to identify at design time, which task migrates at which instant and (ii) bound a priori the number of migrating tasks, while preserving the utilisation bound of NPS-F.
Resumo:
Nowadays, many real-time operating systems discretize the time relying on a system time unit. To take this behavior into account, real-time scheduling algorithms must adopt a discrete-time model in which both timing requirements of tasks and their time allocations have to be integer multiples of the system time unit. That is, tasks cannot be executed for less than one time unit, which implies that they always have to achieve a minimum amount of work before they can be preempted. Assuming such a discrete-time model, the authors of Zhu et al. (Proceedings of the 24th IEEE international real-time systems symposium (RTSS 2003), 2003, J Parallel Distrib Comput 71(10):1411–1425, 2011) proposed an efficient “boundary fair” algorithm (named BF) and proved its optimality for the scheduling of periodic tasks while achieving full system utilization. However, BF cannot handle sporadic tasks due to their inherent irregular and unpredictable job release patterns. In this paper, we propose an optimal boundary-fair scheduling algorithm for sporadic tasks (named BF TeX ), which follows the same principle as BF by making scheduling decisions only at the job arrival times and (expected) task deadlines. This new algorithm was implemented in Linux and we show through experiments conducted upon a multicore machine that BF TeX outperforms the state-of-the-art discrete-time optimal scheduler (PD TeX ), benefiting from much less scheduling overheads. Furthermore, it appears from these experimental results that BF TeX is barely dependent on the length of the system time unit while PD TeX —the only other existing solution for the scheduling of sporadic tasks in discrete-time systems—sees its number of preemptions, migrations and the time spent to take scheduling decisions increasing linearly when improving the time resolution of the system.
Resumo:
Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, consider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct types of processors. For this problem, we propose a new algorithm, LPC (task assignment based on solving a Linear Program with Cutting planes). The algorithm offers the following guarantee: for a given task set and a platform, if there exists a feasible task-to-processor assignment, then LPC succeeds in finding such a feasible task-to-processor assignment as well but on a platform in which each processor is 1.5 × faster and has three additional processors. For systems with a large number of processors, LPC has a better approximation ratio than state-of-the-art algorithms. To the best of our knowledge, this is the first work that develops a provably good real-time task assignment algorithm using cutting planes.
Resumo:
“Many-core” systems based on a Network-on-Chip (NoC) architecture offer various opportunities in terms of performance and computing capabilities, but at the same time they pose many challenges for the deployment of real-time systems, which must fulfill specific timing requirements at runtime. It is therefore essential to identify, at design time, the parameters that have an impact on the execution time of the tasks deployed on these systems and the upper bounds on the other key parameters. The focus of this work is to determine an upper bound on the traversal time of a packet when it is transmitted over the NoC infrastructure. Towards this aim, we first identify and explore some limitations in the existing recursive-calculus-based approaches to compute the Worst-Case Traversal Time (WCTT) of a packet. Then, we extend the existing model by integrating the characteristics of the tasks that generate the packets. For this extended model, we propose an algorithm called “Branch and Prune” (BP). Our proposed method provides tighter and safe estimates than the existing recursive-calculus-based approaches. Finally, we introduce a more general approach, namely “Branch, Prune and Collapse” (BPC) which offers a configurable parameter that provides a flexible trade-off between the computational complexity and the tightness of the computed estimate. The recursive-calculus methods and BP present two special cases of BPC when a trade-off parameter is 1 or ∞, respectively. Through simulations, we analyze this trade-off, reason about the implications of certain choices, and also provide some case studies to observe the impact of task parameters on the WCTT estimates.