943 resultados para Time-Fractional Diffusion-Wave Problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the research project was to gain d complete and accurate accounting of the needs and deficiencies of materials selection and design data, with particular attention given to the feasibility of a computerised materials selection system that would include application analysis, property data and screening techniques. The project also investigates and integrates the three major aspects of materials resources, materials selection and materials recycling. Consideration of the materials resource base suggests that, though our discovery potential has increased, geologic availability is the ultimate determinant and several metals may well become scarce at the same time, thus compounding the problem of substitution. With around 2- to 20- million units of engineering materials data, the use of a computer is the only logical answer for scientific selection of materials. The system developed at Aston is used for data storage, mathematical computation and output. The system enables programs to be run in batch and interactive (on-line) mode. The program with modification can also handle such variables as quantity of mineral resources, energy cost of materials and depletion and utilisation rates of strateqic materials. The work also carries out an in-depth study of copper recycling in the U.K. and concludes that, somewhere in the region of 2 million tonnes of copper is missing from the recycling cycle. It also sets out guidelines on product design and conservation policies from the recyclability point of view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two assembly line balancing problems are addressed. The first problem (called SALBP-1) is to minimize number of linearly ordered stations for processing n partially ordered operations V = {1, 2, ..., n} within the fixed cycle time c. The second problem (called SALBP-2) is to minimize cycle time for processing partially ordered operations V on the fixed set of m linearly ordered stations. The processing time ti of each operation i ∈V is known before solving problems SALBP-1 and SALBP-2. However, during the life cycle of the assembly line the values ti are definitely fixed only for the subset of automated operations V\V . Another subset V ⊆ V includes manual operations, for which it is impossible to fix exact processing times during the whole life cycle of the assembly line. If j ∈V , then operation times tj can differ for different cycles of the production process. For the optimal line balance b of the assembly line with operation times t1, t2, ..., tn, we investigate stability of its optimality with respect to possible variations of the processing times tj of the manual operations j ∈ V .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic “secular variation” in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher-ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long-standing theoretical insufficiency by invoking a compact exact n-ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third-ordered perturbative solution, that leads to a seamless extension to higher-order (e.g., fifth-order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desired higher-ordered expansion may be compacted within the same representation, but without any aperiodicity in the spectral pattern of the wave guides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such type of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural evolution but none of these models have considered the impact of a finite decay time (all previous models assumed instantaneous relaxation which is "unphysical") of the stochastic perturbations in the overall dynamics of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant Fokker-Planck model, our results show that linear Wiener processes remain unaffected by the second time scale in the problem but all nonlinear processes, both Wiener type and Ornstein-Uhlenbeck type, scale as a function of the noise decay time τ. The results are expected to ramify existing experimental observations and inspire new numerical and laboratory tests to gain further insight into the competition between deterministic and random effects in modeling plastically deformed samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large class of computational problems are characterised by frequent synchronisation, and computational requirements which change as a function of time. When such a problem is solved on a message passing multiprocessor machine [5], the combination of these characteristics leads to system performance which deteriorate in time. As the communication performance of parallel hardware steadily improves so load balance becomes a dominant factor in obtaining high parallel efficiency. Performance can be improved with periodic redistribution of computational load; however, redistribution can sometimes be very costly. We study the issue of deciding when to invoke a global load re-balancing mechanism. Such a decision policy must actively weigh the costs of remapping against the performance benefits, and should be general enough to apply automatically to a wide range of computations. This paper discusses a generic strategy for Dynamic Load Balancing (DLB) in unstructured mesh computational mechanics applications. The strategy is intended to handle varying levels of load changes throughout the run. The major issues involved in a generic dynamic load balancing scheme will be investigated together with techniques to automate the implementation of a dynamic load balancing mechanism within the Computer Aided Parallelisation Tools (CAPTools) environment, which is a semi-automatic tool for parallelisation of mesh based FORTRAN codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many different designs for audio amplifiers. Class-D, or switching, amplifiers generate their output signal in the form of a high-frequency square wave of variable duty cycle (ratio of on time to off time). The square-wave nature of the output allows a particularly efficient output stage, with minimal losses. The output is ultimately filtered to remove components of the spectrum above the audio range. Mathematical models are derived here for a variety of related class-D amplifier designs that use negative feedback. These models use an asymptotic expansion in powers of a small parameter related to the ratio of typical audio frequencies to the switching frequency to develop a power series for the output component in the audio spectrum. These models confirm that there is a form of distortion intrinsic to such amplifier designs. The models also explain why two approaches used commercially succeed in largely eliminating this distortion; a new means of overcoming the intrinsic distortion is revealed by the analysis. Copyright (2006) Society for Industrial and Applied Mathematics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The asymptotic speed problem of front solutions to hyperbolic reaction-diffusion (HRD) equations is studied in detail. We perform linear and variational analyses to obtain bounds for the speed. In contrast to what has been done in previous work, here we derive upper bounds in addition to lower ones in such a way that we can obtain improved bounds. For some functions it is possible to determine the speed without any uncertainty. This is also achieved for some systems of HRD (i.e., time-delayed Lotka-Volterra) equations that take into account the interaction among different species. An analytical analysis is performed for several systems of biological interest, and we find good agreement with the results of numerical simulations as well as with available observations for a system discussed recently

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We have performed MRI examinations to determine the water diffusion tensor in the brain of six patients who were admitted to the hospital within 12 h after the onset of cerebral ischemic symptoms. The examinations have been carried out immediately after admission, and thereafter at varying intervals up to 90 days post admission. Maps of the trace of the diffusion tensor, the fractional anisotropy and the lattice index, as well as maps of cerebral blood perfusion parameters, were generated to quantitatively assess the character of the water diffusion tensor in the infarcted area. In patients with significant perfusion deficits and substantial lesion volume changes, four of six cases, our measurements show a monotonic and significant decrease in the diffusion anisotropy within the ischemic lesion as a function of time. We propose that retrospective analysis of this quantity, in combination with brain tissue segmentation and cerebral perfusion maps, may be used in future studies to assess the severity of the ischemic event. (C) 1999 Elsevier Science Inc.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper studies the Fermi-Pasta-Ulam problem having in mind the generalization provided by Fractional Calculus (FC). The study starts by addressing the classical formulation, based on the standard integer order differential calculus and evaluates the time and frequency responses. A first generalization to be investigated consists in the direct replacement of the springs by fractional elements of the dissipative type. It is observed that the responses settle rapidly and no relevant phenomena occur. A second approach consists of replacing the springs by a blend of energy extracting and energy inserting elements of symmetrical fractional order with amplitude modulated by quadratic terms. The numerical results reveal a response close to chaotic behaviour.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This study addresses the optimization of rational fraction approximations for the discrete-time calculation of fractional derivatives. The article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates the problem in an optimization perspective by tacking advantage of the flexibility of the genetic algorithms.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We study some properties of the monotone solutions of the boundary value problem (p(u'))' - cu' + f(u) = 0, u(-infinity) = 0, u(+infinity) = 1, where f is a continuous function, positive in (0, 1) and taking the value zero at 0 and 1, and P may be an increasing homeomorphism of (0, 1) or (0, +infinity) onto [0, +infinity). This problem arises when we look for travelling waves for the reaction diffusion equation partial derivative u/partial derivative t = partial derivative/partial derivative x [p(partial derivative u/partial derivative x)] + f(u) with the parameter c representing the wave speed. A possible model for the nonlinear diffusion is the relativistic curvature operator p(nu)= nu/root 1-nu(2). The same ideas apply when P is given by the one- dimensional p- Laplacian P(v) = |v|(p-2)v. In this case, an advection term is also considered. We show that, as for the classical Fisher- Kolmogorov- Petrovski- Piskounov equations, there is an interval of admissible speeds c and we give characterisations of the critical speed c. We also present some examples of exact solutions. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper we propose the use of the least-squares based methods for obtaining digital rational approximations (IIR filters) to fractional-order integrators and differentiators of type sα, α∈R. Adoption of the Padé, Prony and Shanks techniques is suggested. These techniques are usually applied in the signal modeling of deterministic signals. These methods yield suboptimal solutions to the problem which only requires finding the solution of a set of linear equations. The results reveal that the least-squares approach gives similar or superior approximations in comparison with other widely used methods. Their effectiveness is illustrated, both in the time and frequency domains, as well in the fractional differintegration of some standard time domain functions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Over the last decade, there has been a significant increase in the number of high-magnetic-field MRI magnets. However, the exact effect of a high magnetic field strength (B0 ) on diffusion-weighted MR signals is not yet fully understood. The goal of this study was to investigate the influence of different high magnetic field strengths (9.4 T and 14.1 T) and diffusion times (9, 11, 13, 15, 17 and 24 ms) on the diffusion-weighted signal in rat brain white matter. At a short diffusion time (9 ms), fractional anisotropy values were found to be lower at 14.1 T than at 9.4 T, but this difference disappeared at longer diffusion times. A simple two-pool model was used to explain these findings. The model describes the white matter as a first hindered compartment (often associated with the extra-axonal space), characterized by a faster orthogonal diffusion and a lower fractional anisotropy, and a second restricted compartment (often associated with the intra-axonal space), characterized by a slower orthogonal diffusion (i.e. orthogonal to the axon direction) and a higher fractional anisotropy. Apparent T2 relaxation time measurements of the hindered and restricted pools were performed. The shortening of the pseudo-T2 value from the restricted compartment with B0 is likely to be more pronounced than the apparent T2 changes in the hindered compartment. This study suggests that the observed differences in diffusion tensor imaging parameters between the two magnetic field strengths at short diffusion time may be related to differences in the apparent T2 values between the pools. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The speed and width of front solutions to reaction-dispersal models are analyzed both analytically and numerically. We perform our analysis for Laplace and Gaussian distribution kernels, both for delayed and nondelayed models. The results are discussed in terms of the characteristic parameters of the models