932 resultados para TiO2-SiO2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the sol-gel mixed oxide SiO2/TiO2 property, ST, as prepared, and submitted to heat treatment a 773 K, STC. SEM and EDS images show, within magnification used, a uniform distribution of the TiO2 particles in SiO2/TiO2 matrix. Both, ST and STC adsorb hydrogen peroxide on the surface and through EPR and UV-Vis diffuse reflectance spectra, it was possible to conclude that the species on the surface is the peroxide molecule attached to the Lewis acid site of titanium particle surface, alphaTi(H2O2)+. As the material is very porous, presumably the hydrogen peroxide molecule is confined in the matrix pores on the surface, a reason why the adsorbed species presents an exceptional long lived stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste estudo foi desenvolvido uma metodologia para determinação de Ni(II) em amostras de água usando a extração em fase sólida (SPE) em um sistema por injeção em fluxo (FI) e detecção por espectrometria de absorção atômica em chama (F AAS). O adsorvente utilizado para a extração e pré-concentração do Ni(II) foi a sílica gel modificada com óxido de nióbio(V). Variáveis químicas e de fluxo do sistema em linha foram otimizadas usando planejamento fatorial completo (N = 2k + 3). As condições iniciais do sistema FI-F AAS foram volume de amostra de 10 mL e concentração de Ni(II) de 100 µg L-1. O tampão Sörensen foi selecionado neste estudo. A resposta analítica utilizada foi absorvância integrada. Após a otimização foram obtidos os parâmetros analíticos de mérito: faixa linear de trabalho estudada de 5-100 µg L-1; R = 0.9999; RSD = 1,5% (35 µg L-1, n = 7); limite de detecção de 0,8 µg L-1; limite de quantificação de 2,7 µg L-1 e fator de enriquecimento de 92,25. Foram analisadas amostras de água do rio Araranguá e a da rede de abastecimento da cidade de Florianópolis, ambas do estado de Santa Catarina. As duas amostras não apresentaram concentração de níquel acima do limite de detecção e após fortificação das mesmas os valores de recuperação foram na faixa de 100,2 a 103,8%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho investiga a degradação fotoeletrocatalítica do corante Azul Básico 41 (AB 41) amplamente utilizado na tintura de fibras sintéticas, utilizando um semicondutor Ti/TiO2 como fotoanodo. 100% de degradação foi obtida após 60 min de tratamento de 8,33x10-5 mol L-1 do corante em 0,1 mol L−1 Na2SO4, pH 2 sob densidade de corrente de 0,40 mA cm−2 e irradiação UV. Ainda foi obtido 80% de remoção de carbono orgânico total, cuja oxidação segue uma reação de pseudo-primeira ordem com constante de velocidade inicial de -0,040 mim-1 e uma eficiência de corrente de 51%. Os resultados são superiores á fotocatálise convencional nas mesmas condições sem a polarização do fotoanodo que leva a 65% de mineralização sob constante de velocidade de -0,024 mim-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vätning av fasta ytor är ett viktigt fenomen i såväl naturen som i en lång rad av industriella tillämpningar. Det är allmänt känt att vätningen av en fast yta styrs av ytans kemi samt struktur. Målsättningen med avhandlingen var att studera hur kemisk heterogenitet och ytråhet på nanometernivå påverkar vätningsegenskaperna hos en fast yta. Ytorna som studerades var titandioxid-baserade kerama ytor som framställdes med hjälp av en sol-gel process. Vätningstudierna utfördes genom kontaktvinkelmätningar, vilket innebär att man mäter vinkeln som vätska/luft-gränsskiktet hos en vätskedroppe bildar mot en fast yta. Ytråheten hos materialen studerades främst genom atomkraftsmikroskopi (AFM). I AFM detekteras ytans struktur av en mycket skarp nål som skannar ytan. Resultaten i avhandlingen kunde framgångsrikt modelleras med existerande teorier för vätning av heterogena ytor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asthma and allergy are common diseases and their prevalence is increasing. One of the hypotheses that explains this trend is exposure to inhalable chemicals such as traffi c-related air pollution. Epidemiological research supports this theory, as a correlation between environmental chemicals and allergic respiratory diseases has been found. In addition to ambient airborne particles, one may be exposed to engineered nanosized materials that are actively produced due to their favorable physico-chemical properties compared to their bulk size counterparts. On the cellular level, improper activity of T helper (Th) cells has been connected to allergic reactions. Th cells can differentiate into functionally different effector subsets, which are identifi ed according to their characteristic cytokine profi les resulting in specifi c ability to communicate with other cells. Th2 cells activate humoral immunity and stimulate eradication of extracellular pathogens. However, persistent predominance of Th2 cells is involved in a development of number of allergic diseases. The cytokine environment at the time of antigen recognition is the major factor determining the polarization of a naïve Th cell. Th2 cell differentiation is initiated by IL4, which signals via transcription factor STAT6. Although the importance of this pathway has been evaluated in the mouse studies, the signaling components involved have been largely unknown. The aim of this thesis was to identify molecules, which are under the control of IL4 and STAT6 in Th cells. This was done by using system-level analysis of STAT6 target genes at genome, mRNA and protein level resulting in identifi cation of various genes previously not connected to Th2 cell phenotype acquisition. In the study, STAT6-mediated primary and secondary target genes were dissection from each other and a detailed transcriptional kinetics of Th2 cell polarization of naïve human CD4+ T cells was collected. Integration of these data revealed the hierarchy of molecular events that mediates the differentiation towards Th2 cell phenotype. In addition, the results highlighted the importance of exploiting proteomics tools to complement the studies on STAT6 target genes identifi ed through transcriptional profi ling. In the last subproject, the effects of the exposure with ZnO and TiO2 nanoparticles was analyzed in Jurkat T cell line and in primary human monocyte-derived macrophages and dendritic cells to evaluate their toxicity and potential to cause infl ammation. Identifi cation of ZnO-derived gene expression showed that the same nanoparticles may elicit markedly distinctive responses in different cell types, thus underscoring the need for unbiased profi ling of target genes and pathways affected. The results gave additional proof that the cellular response to nanosized ZnO is due to leached Zn2+ ions. The approach used in ZnO and TiO2 nanoparticle study demonstrated the value of assessing nanoparticle responses through a toxicogenomics approach. The increased knowledge of Th2 cell signaling will hopefully reveal new therapeutic nodes and eventually improve our possibilities to prevent and tackle allergic infl ammatory diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxidation potential of pulsed corona discharge concerning aqueous impurities is limited in respect to certain refractory compounds. This may be enhanced in combination of the discharge with catalysis/photocatalysis as developed in homogeneous gas-phase reactions. The objective of the work consists of testing the hypothesis of oxidation potential enhancement in combination of the discharge with TiO2 photocatalysis applied to aqueous solutions of refractory oxalate. Meglumine acridone acetate was included for meeting the practical needs. The experimental research was undertaken into oxidation of aqueous solutions under conditions of various target pollutant concentrations, pH and the pulse repetition rate with plain electrodes and the electrodes with TiO2 attached to their surface. The results showed no positive influence of the photocatalyst, the pollutants were oxidized with the rate identical within the accuracy of measurements. The possible explanation for the observed inefficiency may include low UV irradiance, screening effect of water and generally low oxidation rate in photocatalytic reactions. Further studies might include combination of electric discharge with ozone decomposition/radical formation catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we discuss the electronic, structural, and optical properties of titanium dioxide nanoparticles, and also the properties of Ni(II) diimine dithiolato complexes as dyes in dye-sensitized TiO2 based solar cells. The abovementioned properties have been modeled by using computational codes based on the density functional theory. The results achieved show slight evidence on the structure-dependent band gap broadening, and clear blue-shifts in absorption spectra and refractive index functions of ultra-small TiO2 particles. It is also shown that these properties are strongly dependent on the shape of the nanoparticles. Regarding the Ni(II) diimine dithiolato complexes as dyes in dye-sensitized TiO2 based solar cells, it is shown that based on the experimental electrochemical investigation and DFT studies all studied diimine derivatives could serve as potential candidates for the light harvesting, but the e ciencies of the dyes studied are not very promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to identify the best grease removal technique with the application of low power of UV light to TiO2 coated grease filters. The treatment with various power series of ozone generating and ozone free lamps to normal grease filters and TiO2 coated grease filters were examined and the obtained results are compared to each other in this paper. The effect of ozone reaction was observed and compared with the effect of TiO2. The experiments were solely based on the photo oxidation and photo catalytic oxidation reactions. TiO2 is a green catalyst used in the photocatalytic reaction. Sunflower oil was used for grease production and tetracholoroethylene as a solvent. Grease samples were collected from the ventilation duct connected to the cooking hood system. Sample extraction was done in ultrasonic bath with the principle of sonication. The sample analysis was done by FTIR machine. The result determining the concentration of grease was the quantification of saturated C-H bonds in the chosen peak group of the spectrum. A very low power of UVC light functions perfectly with the Titanium dioxide. The experimental results have shown the combined treatment of titanium dioxide and UV light is an effective method in grease removal process. The photocatalytic reaction with titanium dioxide is better than photo oxidation reaction with ozone treatment. Photocatalytic reaction is environmentally friendly, energy efficient and economical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method. The literature part deals with properties of different TiO2 crystal forms, principles of photocatalysis, sol-gel method and pulsed electric field processing. It was expected that the pulsed electric field would have an influence on crystallite size, specific surface area, polymorphism and photocatalytic activity of produced particles. TiO2 samples were prepared by using different frequencies and treatment times of pulsed electric field. The properties of produced TiO2 particles were examined X-ray diffraction (XRD), Raman spectroscopy and BET surface area analysis. The photocatalytic activities of produced TiO2 particles were determined by using them as photocatalysts for the degradation of formic acid under UVA-light. The photocatalytic activities of samples produced with sol-gel method were also compared with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH). Pulsed electric field did not have an effect on the morphology of particles. Results from XRD and Raman analysis showed that all produced TiO2 samples were pure anatase. However, pulsed electric field did have an effect on crystallite size, specific surface area and photocatalytic activity of TiO2 particles. Generally, the crystallite sizes were smaller, specific surface areas larger and initial formic acid degradation rates higher for samples that were produced by applying the pulsed electric field. The higher photocatalytic activities were attributed to larger surface areas and smaller crystallite sizes. Though, with all of the TiO2 samples produced by the sol-gel method the initial formic acid degradation rates were significantly slower than with the commercial TiO2 powder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method under the visible light irradiation. The literature part introduces properties of different TiO2 crystal forms and principle of photocatalysis. It was expected that pulsed electric field would have an influence on degradation for oxalic acid and formic acid. TiO2 samples were prepared by using three frequencies (50Hz, 294Hz, and 963Hz) and two treatment times (12 minutes and 24 minutes) of pulsed electric field. The photocatalytic activities of TiO2 samples produced with sol-gel method were also compared with the TiO2 particles made by previous study and with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH) at the same condition. Results show that pulsed electric field does have an effect on degradation for oxalic acid and formic acid. Generally, higher photocatalytic activities for oxalic acid and formic acid were obtained with lower frequency and longer treatment time of pulsed electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen (H2) fuel cells have been considered a promising renewable energy source. The recent growth of H2 economy has required highly sensitive, micro-sized and cost-effective H2 sensor for monitoring concentrations and alerting to leakages due to the flammability and explosiveness of H2 Titanium dioxide (TiO2) made by electrochemical anodic oxidation has shown great potential as a H2 sensing material. The aim of this thesis is to develop highly sensitive H2 sensor using anodized TiO2. The sensor enables mass production and integration with microelectronics by preparing the oxide layer on suitable substrate. Morphology, elemental composition, crystal phase, electrical properties and H2 sensing properties of TiO2 nanostructures prepared on Ti foil, Si and SiO2/Si substrates were characterized. Initially, vertically oriented TiO2 nanotubes as the sensing material were obtained by anodizing Ti foil. The morphological properties of tubes could be tailored by varying the applied voltages of the anodization. The transparent oxide layer creates an interference color phenomena with white light illumination on the oxide surface. This coloration effect can be used to predict the morphological properties of the TiO2 nanostructures. The crystal phase transition from amorphous to anatase or rutile, or the mixture of anatase and rutile was observed with varying heat treatment temperatures. However, the H2 sensing properties of TiO2 nanotubes at room temperature were insufficient. H2 sensors using TiO2 nanostructures formed on Si and SiO2/Si substrates were demonstrated. In both cases, a Ti layer deposited on the substrates by a DC magnetron sputtering method was successfully anodized. A mesoporous TiO2 layer obtained on Si by anodization in an aqueous electrolyte at 5°C showed diode behavior, which was influenced by the work function difference of Pt metal electrodes and the oxide layer. The sensor enabled the detection of H2 (20-1000 ppm) at low operating temperatures (50–140°C) in ambient air. A Pd decorated tubular TiO2 layer was prepared on metal electrodes patterned SiO2/Si wafer by anodization in an organic electrolyte at 5°C. The sensor showed significantly enhanced H2 sensing properties, and detected hydrogen in the range of a few ppm with fast response/recovery time. The metal electrodes placed under the oxide layer also enhanced the mechanical tolerance of the sensor. The concept of TiO2 nanostructures on alternative substrates could be a prospect for microelectronic applications and mass production of gas sensors. The gas sensor properties can be further improved by modifying material morphologies and decorating it with catalytic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Química Analítica) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Química Analítica) U.A.N.L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Ingeniería Cerámica) U.A.N.L.