964 resultados para Thyroid hormone responsive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cytochrome P450 1A1 (CYP1A1) monooxygenase plays an important role in the metabolism of environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) and halogenated polycyclic aromatic hydrocarbons (HAHs). Oxidation of these compounds converts them to the metabolites that subsequently can be conjugated to hydrophilic endogenous entities e.g. glutathione. Derivates generated in this way are water soluble and can be excreted in bile or urine, which is a defense mechanism. Besides detoxification, metabolism by CYP1A1 may lead to deleterious effects since the highly reactive intermediate metabolites are able to react with DNA and thus cause mutagenic effects, as it is in the case of benzo(a) pyrene (B[a]P). CYP1A1 is normally not expressed or expressed at a very low level in the cells but it is inducible by many PAHs and HAHs e.g. by B[a]P or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Transcriptional activation of the CYP1A1 gene is mediated by aryl hydrocarbon receptor (AHR), a basic-helix-loop-helix (bHLH) transcription factor. In the absence of a ligand AHR stays predominantly in the cytoplasm. Ligand binding causes translocation of AHR to the nuclear compartment, its heterodimerization with another bHLH protein, the aryl hydrocarbon nuclear translocator (ARNT) and binding of the AHR/ARNT heterodimer to a DNA motif designated dioxin responsive element (DRE). This process leads to the transcriptional activation of the responsive genes containing DREs in their regulatory regions, e.g. that coding for CYP1A1. TCDD is the most potent known agonist of AHR. Since it is not metabolized by the activated enzymes, exposure to this compound leads to a persisting activation of AHR resulting in diverse toxic effects in the organism. To enlighten the molecular mechanisms that mediate the toxicity of xenobiotics like TCDD and related compounds, the AHR-dependent regulation of the CYP1A1 gene was investigated in two cell lines: human cervix carcinoma (HeLa) and mouse hepatoma (Hepa). Study of AHR activation and its consequence concerning expression of the CYP1A1 enzyme confirmed the TCDD-dependent formation of the AHR/ARNT complex on DRE leading to an increase of the CYP1A1 transcription in Hepa cells. In contrast, in HeLa cells formation of the AHR/ARNT heterodimer and binding of a protein complex containing AHR and ARNT to DRE occurred naturally in the absence of TCDD. Moreover, treatment with TCDD did not affect the AHR/ARNT dimer formation and binding of these proteins to DRE in these cells. Even though the constitutive complex on DRE exists in HeLa, transcription of the CYP1A1 gene was not increased. Furthermore, the CYP1A1 level in HeLa cells remained unchanged in the presence of TCDD suggesting repressional mechanism of the AHR complex function which may hinder the TCDD-dependent mechanisms in these cells. Similar to the native, the mouse CYP1A1-driven reporter constructs containing different regulatory elements were not inducible by TCDD in HeLa cells, which supported a presence of cell type specific trans-acting factor in HeLa cells able to repress both the native CYP1A1 and CYP1A1-driven reporter genes rather than species specific differences between CYP1A1 genes of human and rodent origin. The different regulation of the AHR-mediated transcription of CYP1A1 gene in Hepa and HeLa cells was further explored in order to elucidate two aspects of the AHR function: (I) mechanism involved in the activation of AHR in the absence of exogenous ligand and (II) factor that repress function of the exogenous ligand-independent AHR/ARNT complex. Since preliminary studies revealed that the activation of PKA causes an activation of AHR in Hepa cells in the absence of TCDD, the PKA-dependent signalling pathway was the proposed endogenous mechanism leading to the TCDD-independent activation of AHR in HeLa cells. Activation of PKA by forskolin or db-cAMP as well as inhibition of the kinase by H89 in both HeLa and Hepa cells did not lead to alterations in the AHR interaction with ARNT in the absence of TCDD and had no effect on binding of these proteins to DRE. Moreover, the modulators of PKA did not influence the CYP1A1 activity in these cells in the presence and in the absence of TCDD. Thus, an involvement of PKA in the regulation of the CYP1A1 Gen in HeLa cells was not evaluated in the course of this study. Repression of genes by transcription factors bound to their responsive elements in the absence of ligands has been described for nuclear receptors. These receptors interact with protein complex containing histone deacetylase (HDAC), enzyme responsible for the repressional effect. Thus, a participation of histone deacetylase in the transcriptional modulation of CYP1A1 gene by the constitutively DNA-bound AHR/ARNT complex was supposed. Inhibition of the HDAC activity by trichostatin A (TSA) or sodium butyrate (NaBu) led to an increase of the CYP1A1 transcription in the presence but not in the absence of TCDD in Hepa and HeLa cells. Since amount of the AHR and ARNT proteins remained unchanged upon treatment of the cells with TSA or NaBu, the transcriptional upregulation of CYP1A1 gene was not due to an increased expression of the regulatory proteins. These findings strongly suggest an involvement of HDAC in the repression of the CYP1A1 gene. Similar to the native human CYP1A1 also the mouse CYP1A1-driven reporter gene transfected into HeLa cells was repressed by histone deacetylase since the presence of TSA or NaBu led to an increase in the reporter activity. Induction of reporter gene did not require a presence of the promoter or negative regulatory regions of the CYP1A1 gene. A promoter-distal fragment containing three DREs together with surrounding sequences was sufficient to mediate the effects of the HDAC inhibitors suggesting that the AHR/ARNT binding to its specific DNA recognition site may be important for the CYP1A1 repression. Histone deacetylase is recruited to the specific genes by corepressors, proteins that bind to the transcription factors and interact with other members of the HDAC complex. Western blot analyses revealed a presence of HDAC1 and the corepressors mSin3A (mammalian homolog of yeast Sin3) and SMRT (silencing mediator for retinoid and thyroid hormone receptor) in both cell types, while the corepressor NCoR (nuclear receptor corepressor) was expressed exclusively in HeLa cells. Thus the high inducibility of CYP1A1 in Hepa cells may be due to the absence of NCoR in these cells in contrast to the non-responsive HeLa cells, where the presence of NCoR would support repression of the gene by histone deacetylase. This hypothesis was verified in reporter gene experiments where expression constructs coding for the particular members of the HDAC complex were cotransfected in Hepa cells together with the TCDD-inducible reporter constructs containing the CYP1A1 regulatory sequences. An overexpression of NCoR however did not decrease but instead led to a slight increase of the reporter gene activity in the cells. The expected inhibition was observed solely in the case of SMRT that slightly reduced constitutive and TCDD-induced reporter gene activity. A simultaneous expression of NCoR and SMRT shown no further effects and coexpression of HDAC1 with the two corepressors did not alter this situation. Thus, additional factors that are likely involved in the repression of CYP1A1 gene by HDAC complex remained to be identified. Taking together, characterisation of an exogenous ligand independent AHR/ARNT complex on DRE in HeLa cells that repress transcription of the CYP1A1 gene creates a model system enabling investigation of endogenous processes involved in the regulation of AHR function. This study implicates HDAC-mediated repression of CYP1A1 gene that contributes to the xenobiotic-induced expression in a tissue specific manner. Elucidation of these processes gains an insight into mechanisms leading to deleterious effects of TCDD and related compounds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thyroid hormone is a central regulator of body functions. Disorders of thyroid function are considered to be a cause of electrolyte disorders. Only few data on the association between thyroid function and electrolyte disorders exists.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effectiveness of antithyroid drug treatment of Graves' hyperthyroidism is documented by measuring initially free T4 and free T3 and later free T4, free T3 and TSH. An elevated titer of the Graves'-specific thyroid stimulating antibodies is not usually rechecked before the end of the antithyroid drug therapy. Thyroxine treatment of primary hypothyroidism is controlled by TSH measurements. In patients in whom TSH levels might be affected by drugs or nonthyroid diseases, free T4 is measured in addition to TSH. The assessment of the treatment of Hashimoto's chronic thyroiditis consists of the control of the therapy of its associated hypothyroidism. In subacute thyroiditis de Quervain control of the effectiveness of the analgesic therapy is most important. To check the effect of thyroid hormone treatment given with the intent to reduce goiter size, serial sonographies are of great value. In the follow-up of patients with thyroid carcinomas, measurements of thyroglobulin (for papillary and follicular thyroid cancers) and of calcitonin (for medullary thyroid cancers) in the serum as well as thyroid scans and other imaging procedures play an important role.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thyroid diseases are caused by a disturbance of thyroid hormone secretion, inflammations or tumors of the thyroid or combinations thereof. Most important causes for hyperthyroidism are Graves' disease and toxic nodular goiters (including toxic adenomas). Hypothyroidism is often caused by Hashimoto's chronic thyroiditis and can occur in patients after thyroidectomy. Chronic hashimoto's thyroiditis and subacute de Quervain's thyroiditis are the thyroid inflammations most frequently seen. Graves' disease and Hashimoto's thyroiditis are autoimmune thyroid diseases. Thyroid tumors encompass benign solitary nodules, diffuse and nodular goiters, papillary, follicular, medullary and anaplastic carcinomas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The association between subclinical thyroid dysfunction and cardiovascular outcomes has been recently clarified with the publication of three individual participant data (IPD) analyses from the Thyroid Studies Collaboration. We identified original cohort studies with a systematic review and pooled individual data from over 70'000 participants to obtain a more precise estimate of the risks of cardiovascular outcomes associated with subclinical thyroid dysfunction. Subclinical hypothyroidism and subclinical hyperthyroidism, defined as normal thyroxine (FT4) levels with increased or decreased Thyroid-Stimulating Hormones (TSH or thyrotropin) respectively, are associated with increased risk of cardiovascular outcomes compared to euthyroid state, particularly in those with a more pronounced thyroid dysfunction. Specifically, subclinical hypothyroidism is associated with an increased risk of coronary heart disease (CHD) events, CHD mortality and heart failure (HF) events in individuals with higher TSH levels, particularly in those with TSH levels ≥10.0 mIU/L. Conversely, subclinical hyperthyroidism is associated with an increased risk of total mortality, CHD mortality, HF and atrial fibrillation, particularly in those with suppressed TSH levels <0.10 mIU/L. Pending ongoing randomized controlled trials, these observational findings allow identifying potential TSH thresholds for thyroid medication initiation based on risk of clinical outcomes, although clinical decision based solely on observational data need caution. The impact of thyroid replacement among the elderly with subclinical hypothyroidism is currently studied in a multicenter international randomized controlled trial (Thyroid Hormone Replacement for Subclinical Hypothyroidism Trial, TRUST trial).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND Subclinical thyroid dysfunction has been implicated as a risk factor for cognitive decline in old age, but results are inconsistent. We investigated the association between subclinical thyroid dysfunction and cognitive decline in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). METHODS Prospective longitudinal study of men and women aged 70-82 years with pre-existing vascular disease or more than one risk factor to develop this condition (N = 5,154). Participants taking antithyroid medications, thyroid hormone supplementation and/or amiodarone were excluded. Thyroid function was measured at baseline: subclinical hyper- and hypothyroidism were defined as thyroid stimulating hormones (TSH) <0.45 mU/L or >4.50 mU/L respectively, with normal levels of free thyroxine (FT4). Cognitive performance was tested at baseline and at four subsequent time points during a mean follow-up of 3 years, using five neuropsychological performance tests. RESULTS Subclinical hyperthyroidism and hypothyroidism were found in 65 and 161 participants, respectively. We found no consistent association of subclinical hyper- or hypothyroidism with altered cognitive performance compared to euthyroid participants on the individual cognitive tests. Similarly, there was no association with rate of cognitive decline during follow-up. CONCLUSION We found no consistent evidence that subclinical hyper- or hypothyroidism contribute to cognitive impairment or decline in old age. Although our data are not in support of treatment of subclinical thyroid dysfunction to prevent cognitive dysfunction in later life, only large randomized controlled trials can provide definitive evidence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The progression of hormone responsive to hormone refractory prostate cancer poses a major clinical challenge in the successful treatment of prostate cancer. The hormone refractory prostate cancer cells exhibit resistance not only to castrate levels of testosterone, but also to other therapeutic modalities and hence become lethal. Currently, there is no effective treatment available for managing this cancer. These observations underscore the urgency to investigate mechanism(s) that contribute to the progression of hormone-responsive to hormone-refractory prostate cancer and to target them for improved clinical outcomes. Tissue transglutaminase (TG2) is a multifunctional pro-inflammatory protein involved in diverse physiological processes such as inflammation, tissue repair, and wound healing. Its expression is also implicated in pathological conditions such as cancer and fibrosis. Interestingly, we found that the androgen-independent prostate cancer cell lines, which lacked androgen receptor (AR) expression, contained high basal levels of tissue transglutaminase. Inversely, the cell lines that expressed androgen receptor lacked transglutaminase expression. This attracted our attention to investigate the possible role this protein may play in the progression of prostate cancer, especially in view of recent observations that its expression is linked with increased invasion, metastasis, and drug resistance in multiple cancer cell types. The results we obtained were rather surprising and revealed that stable expression of tissue transglutaminase in androgen-sensitive LNCaP prostate cancer cells rendered these cells independent of androgen for growth and survival by silencing the AR expression. The AR silencing in TG2 expressing cells (TG2-infected LNCaP and PC-3 cells) was due to TG2-induced activation of the inflammatory nuclear transcription factor-kB (NF-kB). Thus, TG2 induced NF-kB was found to directly bind to the AR promoter. Importantly, TG2 protein was specifically recruited to the AR promoter in complex with the p65 subunit of NF-kB. Moreover, TG2 expressing LNCaP and PC-3 cells exhibited epithelial-to-mesenchymal transition, as evidenced by gain of mesenchymal (such as fibronectin, vimentin, etc.) and loss of epithelial markers (such as E-cadherin, b-catenin). Taken together, these results suggested a new function for TG2 and revealed a novel mechanism that is responsible for the progression of prostate cancer to the aggressive hormone-refractory phenotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vertebrate thyroid system is important for multiple developmental processes, including eye development. Thus, its environmentally induced disruption may impact important fitness-related parameters like visual capacities and behaviour. The present study investigated the relation between molecular effects of thyroid disruption and morphological and physiological changes of eye development in zebrafish (Danio rerio). Two test compounds representing different molecular modes of thyroid disruption were used: propylthiouracil (PTU), which is an enzyme-inhibitor of thyroid hormone synthesis, and tetrabromobisphenol A (TBBPA), which interacts with the thyroid hormone receptors. Both chemicals significantly altered transcript levels of thyroid system-related genes (TRα, TRβ, TPO, TSH, DIO1, DIO2 and DIO3) in a compound-specific way. Despite these different molecular response patterns, both treatments resulted in similar pathological alterations of the eyes such as reduced size, RPE cell diameter and pigmentation, which were concentration-dependent. The morphological changes translated into impaired visual performance of the larvae: the optokinetic response was significantly and concentration-dependently decreased in both treatments, together with a significant increase of light preference of PTU-treated larvae. In addition, swimming activity was impacted. This study provides first evidence that different modes of molecular action of the thyroid disruptors can be associated with uniform apical responses. Furthermore, this study is the first to show that pathological eye development, as it can be induced by exposure to thyroid disruptors, indeed translates into impaired visual capacities of zebrafish early life stages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is widely accepted that the process of breast cancer tumorigenesis involves estrogen receptor-alpha (ER)-regulated stimulatory pathways, which feed into survival, cell cycle progression and proliferative response. Recent data from Kumar laboratory indicate that dynein light chain 1 (DLC1) plays a role in survival, motility and invasiveness, all of which are required for a successful tumorigenesis process. In the present research, we have discovered a mechanistic bidirectional regulatory link between the DLC1 and ER. We found that DLC1 facilitates ligand-induced ER transactivation involving the recruitment of the DLC1-ER complex to ER-target genes. To gain insights into the mechanism by which DLC1 regulates the ER pathway, we set out to identify novel DLC1-interacting proteins. Among other proteins, we identified KIBRA and Ciz1 as two novel DLC1-interacting proteins. We found that the KIBRA-DLC1 complex is recruited to ER-responsive promoters, and that KIBRA-DLC1 interaction is needed for the recruitment of ER to its targets as well as for ER's transactivation function. Finally, we found that KIBRA utilizes its histone H3interacting glutamic acid-rich region to regulate the transactivation activity of ER. During the course of this work, we also discovered that DLC1 interacts with Cdk2 and Ciz1, and such interactions play a direct accelerating role in the G1-S transition of breast cancer cells. While delineating the role of Ciz1 in hormone-responsive cancer cells, we found that Ciz1 is an estrogen-responsive gene, and acts as a co-regulator of ER. Accordingly, Ciz1 overexpression in breast cancer cells conferred estrogen hypersensitivity, promoted the growth-rate, anchorage-independency and tumorigenic properties. Collectively, findings made during the course of the present dissertation research introduced two new molecular players in the action of ER in breast cancer cells, with a particular focus on cell cycle progression and ER-chromatin target regulation. In addition, findings presented here provide novel mechanistic insight about the contribution of DLC1 and its interacting proteins in amplifying the hormone action and promoting the process of breast cancer tumorigenesis. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The high levels of polychlorinated biphenyls (PCBs) and DDT in gray seal (Halichoerus grypus) and ringed seal (Phoca hispida botnica) in the Baltic Sea have been associated with pathological disruptions, including bone lesions and reproductive failures. The underlying environmental and toxicological mechanisms leading to these pathological changes are not yet fully understood. The present study investigated the relationship between the individual contaminant load and bone- and thyroid-related effects in adult gray seals (n = 30) and ringed seals (n = 46) in the highly contaminated Baltic Sea and in reference areas (Sable Island, Canada, and Svalbard, Norway). In the gray seals, multivariate and correlation analyses revealed a clear relationship between circulating 1,25-dihydroxyvitamin D3 (1,25(OH)2D), calcium, phosphate, and thyroid hormone (TH) levels and hepatic PCB and DDT load, which suggests contaminant-mediated disruption of the bone and thyroid homeostasis. Contaminants may depress 1,25(OH)2D levels or lead to hyperthyroidism, which may cause bone resorption. In the ringed seals, associations between circulating 1,25(OH)2D, THs, and hepatic contaminants were less prominent. These results suggest that bone lesions observed in the Baltic gray seals may be associated with contaminant-mediated vitamin D and thyroid disruption.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated whether the hepatic cytochrome P450 1A activity (measured as 7-ethoxyresorufin-O-deethylase (EROD)) and plasma thyroid hormone and liver retinoid concentrations were explained by liver and blood levels of halogenated organic contaminants (HOCs) in free-ranging breeding northern fulmars (Fulmarus glacialis) from Bjornoya in the Norwegian Arctic. Hepatic EROD activity and liver levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents (TEQs) were positively correlated, suggesting that hepatic EROD activity is a good indicator for dioxin and dioxin-like HOC exposure in breeding northern fulmars. There were not found other strong relationships between HOC concentrations and hepatic EROD activity, plasma thyroid or liver retinoid concentrations in the breeding northern fulmars. It is suggested that the HOC levels found in the breeding northern fulmars sampled on Bjornoya were too low to affect plasma concentrations of thyroid hormones and liver levels of retinol and retinyl palmitate, and that hepatic EROD activity is a poor indicator of polychlorinated biphenyl (PCB) and pesticide exposure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thyrotropin-releasing hormone (TRH) is a brain hypothalamic hormone that regulates thyrotropin (TSH) secretion from the anterior pituitary and is ubiquitously distributed throughout the brain and other tissues including pancreas. To facilitate studies into the role of endogenous TRH, we have used homologous recombination to generate mice that lack TRH. These TRH−/− mice are viable, fertile, and exhibit normal development. However, they showed obvious hypothyroidism with characteristic elevation of serum TSH level and diminished TSH biological activity. Their anterior pituitaries exhibited an apparent decrease in TSH immunopositive cells that was not due to hypothyroidism. Furthermore, this decrease could be reversed by TRH, but not thyroid hormone replacement, suggesting a direct involvement of TRH in the regulation of thyrotrophs. The TRH−/− mice also exhibited hyperglycemia, which was accompanied by impaired insulin secretion in response to glucose. These findings indicate that TRH−/− mice provide a model of exploiting tertiary hypothyroidism, and that TRH gene abnormalities cause disturbance of insulin secretion resulting in marked hyperglycemia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nuclear hormone receptors are potent repressors of transcription in the unliganded state. We describe here the cloning of a nuclear receptor corepressor that we call SUN-CoR (Small Unique Nuclear receptor CoRepressor), which shows no homology to previously described nuclear hormone receptor corepressors, N-CoR, or SMRT. SUN-CoR is a highly basic, 16-kDa nuclear protein that is expressed at high levels in adult tissues and is induced during adipocyte and myogenic differentiation. SUN-CoR potentiates transcriptional repression by thyroid hormone receptor and RevErb in vivo, represses transcription when fused to a heterologous DNA binding domain, and interacts with RevErb as well as with thyroid hormone receptor in vitro. SUN-CoR also interacts with N-CoR and SMRT in vitro and with endogenous N-CoR in cells. We conclude that SUN-CoR is a corepressor and may function as an additional component of the complex involved in transcriptional repression by unliganded and orphan nuclear hormone receptors.