976 resultados para Tholos (Athens, Greece).
Resumo:
The chemical and isotopic compositions (deltaD(H2O), delta(18)O(H2O), delta(18)O(CO2), delta(13)C(CO2), delta(34)S, and He/N-2 and He/Ar ratios) of fumarolic gases from Nisyros, Greece, indicate that both arc-type magmatic water and local seawater feed the hydrothermal system. Isotopic composition of the deep fluid is estimated to be +4.9+/-0.5parts per thousand for delta(18)O and -11+/-5parts per thousand for deltaD corresponding to a magmatic water fraction of 0.7. Interpretation of the stable water isotopes was based on liquid-vapor separation conditions obtained through gas geothermometry. The H-2-Ar, H-2-N-2, and H-2-H2O geothermometers suggest reservoir temperatures of 345+/-15 degreesC, in agreement with temperatures measured in deep geothermal wells, whereas a vapor/liquid separation temperature of 260+/-30 degreesC is indicated by gas equilibria in the H2O-H-2-CO2-CO-CH4 system. The largest magmatic inputs seem to occur below the Stephanos-Polybotes Micros crater, whereas the marginal fumarolic areas of Phlegeton-Polybotes Megalos craters receive a smaller contribution of magmatic gases.
Resumo:
A new subdivision of the pre-Jurassic Pelagonian Units in central Evia island is proposed these units are represented by syn- and post rift sequences, separated by a volcano-sedimentary episode. The syn-rift sequences comprise Permian siliciclastic sediments in Verrucano tectofacies, (Ano Mavropoulon Formation) and a small carbonate platform (Zigos Limestones) developed from the Permian to the Middle Anisian. The Ano Mavropoulon Fro, is subdivided into three members: the lower member (Permian s.l.) lying on the basement and characterised by medium-coarse elastic terrigenous sedimentation the middle member (Late Permian) Koprises limestones, made up of shallow-water limestones; the upper member (Latest Permian-Early Triassic) comprising elastic terrigenous and minor reworked carbonate sediments. A regional unconformity (earliest Triassic) separates the Zigos Lm. from the top of the Ano Mavropoulon Fm. The peritidal carbonates belonging to the Zigos Lm, have been subdivided into three lithofacies ranging in age from Spathian to Pelsonian (late Early Triassic to Middle Anisian). The volcanic episode is well constrained in all the Pelagonian domain. In central Evia, it has been dated from Middle Anisian to Early Carnian. The sub-alkaline to alkaline basalts comprised in the volcano-sedimentary sequence (Volcano-sedimentary Complex) have a within-plate affinity. The volcanism occurs between the syn-rift and post-rift stages, and it is probably not linked to the passive margin evolution proper. The post-rift sequences are represented by the onset of the Pelagonian platform aggradation (''Pantokrator'' Carnian to Middle-Late? Jurassic) The northern passive margin sequence of Pelagonia (palaeogeographic sense) is interpreted as related to the Maliak ocean opening during the Early Mesozoic.
Resumo:
Échelle(s) : [1:2 581 000 environ] A Scale of English Miles 100 [= 7,2 cm]
Resumo:
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc-Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D-1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D-2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1-39.7 Ma Ar-40/Ar-39 mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane. (C) 2011 Elsevier Ltd. All rights reserved.
The impotence of price controls: failed attempts to constrain pharmaceutical expenditures in Greece.
Resumo:
BACKGROUND: While the prices of pharmaceuticals are relatively low in Greece, expenditure on them is growing more rapidly than almost anywhere else in the European Union. OBJECTIVE: To describe and explain the rise in drug expenditures through decomposition of the increase into the contribution of changes in prices, in volumes and a product-mix effect. METHODS: The decomposition of the growth in pharmaceutical expenditures in Greece over the period 1991-2006 was conducted using data from the largest social insurance fund (IKA) that covers more than 50% of the population. RESULTS: Real drug spending increased by 285%, despite a 58% decrease in the relative price of pharmaceuticals. The increase in expenditure is mainly attributable to a switch to more innovative, but more expensive, pharmaceuticals, indicated by a product-mix residual of 493% in the decomposition. A rising volume of drugs also plays a role, and this is due to an increase in the number of prescriptions issued per doctor visit, rather than an increase in the number of visits or the population size. CONCLUSIONS: Rising pharmaceutical expenditures are strongly determined by physicians' prescribing behaviour, which is not subject to any monitoring and for which there are no incentives to be cost conscious.
Resumo:
Crystallization of anatectic melts in high-temperature metamorphic terrains releases volatile-rich magmas that can be transported into adjacent lithologies. This study addresses the variations in the oxygen, boron and hydrogen isotopic composition of aplite-pegmatite dikes that formed during the crystallization of anatectic melts in regional high-temperature metamorphism on the island of Naxos, Greece, and propagated upward into the overlying sequences of metamorphic schist. The transport distance of these dikes was increased through a significant horizontal component of travel that was imposed by contemporaneous low-angle extensional shearing. Laser fluorination oxygen isotope analyses of quartz, tourmaline, garnet, and biotite mineral separates from the aplite-pegmatite dikes show a progressive rise in delta(18)O values with increasing distance from the core. Oxygen isotope fractionations among quartz, tourmaline, and garnet show temperature variations from > 700degreesC down to similar to400degreesC. This range is considered to reflect isotopic fractionation beginning with crystallization at high temperatures in water-undersaturated conditions and then evolving through lower temperature crystallization and retrograde sub-solidus exchange. Two processes are examined for the cause of the progressive increase in delta(18)O values: (1) heterogeneous delta(18)O sources and (2) fluid-rock exchange between the aplite/pegmatite magmas and their host rock. Although the former process cannot be ruled out, there is as yet no evidence in the exposed sequences on Naxos for the presence of a suitable high delta(18)O magma source. In contrast, a tendency for the delta(18)O of quartz in the aplite/pegmatite dikes to approach that of the quartz in the metamorphic rock suggests that fluid-rock exchange with the host rock may potentially be an important process. Advection of fluid into the magma is examined based on Darcian fluid flow into an initially water-undersaturated buoyantly propagating aplitic dike magma. It is shown that such advective flow could only account for part of the O-18-enrichment, unless it were amplified by repeated injection of magma pulses, fluid recycling, and deformation-assisted post-crystallization exchange. The mechanism is, however, adequate to account for hydrogen isotope equilibration between dike and host rock. In contrast, variations in the delta(11)B values of tourmalines suggest that B-11/B-10 fractionation during crystallization and/or magma degassing was the major control of boron geochemistry rather than fluid-rock interaction and that the boron isotopic system was decoupled from that of oxygen. Copyright (C) 2003 Elsevier Ltd.
Resumo:
The work by Koglin et al. (Koglin, N., Kostopoulos, D., Reichmann, T., 2009. Geochemistry, petrogenesis and tectonic setting of the Samothraki mafic Suite, NE Greece: Trace-element, isotopic and zircon age constraints. Tectonophysics 473, 53-68. doi: 10.1016/j.tecto.2008.10.028), where the authors have proposed to nullify the scenario presented by Bonev and Stampfli (Bonev, N., Stampfli, G., 2008. Petrology, geochemistry and geodynamic implications of Jurassic island arc magmatism as revealed by mafic volcanic rocks in the Mesozoic low-grade sequence, eastern Rhodope, Bulgaria. Lithos 100, 210-233) is here Put under discussion. The arguments for this proposal are reviewed in the light of available stratigraphic and radiometric age constraints, geochemical signature and tectonics of highly relevant Jurassic ophiolitic suites occurring immediately north of the Samothraki mafic suite. Our conclusion is that the weak arguments and the lack of knowledge on the relevant constraints from the regional geologic information make inconsistent the Proposal and the model of these authors. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This article examines the shoreline evolution and human occupation in the vicinity of the important archeological site of Amarynthos (Euboea Island, Greece) over the last six millennia. Archeological evidence indicates a continuous occupation of the site from the Bronze Age to the Roman period and the site is well-known, thanks to the existence of a sanctuary dedicated to the goddess Artemis. Based on the study of four boreholes, a paleogeographic reconstruction of the coastal landscape is proposed. Facies were determined based on mollusc identification, and sedimentology based on grain-size measurements (hand sieving for the fraction above 2 mm and LASER technique for particles below 2 mm) and loss-on-ignition. In addition, a series of 12 AMS radiocarbon dates define a reliable chronostratigraphy. Results suggest the presence of a fully marine environment from the early Holocene to ca. 2600-2400 cal. BC, which developed into a brackish environment from ca. 2600-2400 cal. BC to ca. 750 cal. BC due to the deltaic progradation of the nearby stream (Sarandapotamos River). From ca. 750 cal. BC onward, coastal swamps prevailed in the study area. Human-environmental interaction is discussed and particular attention is paid to the paleolandscape configuration of Amarynthos.
Resumo:
Phengites from the eclogite and blueschist-facies sequences of the Cycladic island of Syros (Greece) have been dated by the in situ UV-laser ablation Ar-40/Ar-39 method. A massive, phengite-rich eclogite and an omphacite-rich metagabbro were investigated. The phengites are eubedral and coarse-grained (several 100 mum), strain-free and exhibit no evidence for late brittle deformation or recrystallization. Apparent ages in these samples range from 43 to 50 Ma for the phengite-rich eclogite and 42 to 52 Ma for the ompbacitic metagabbro. This large spread of ages is visible at all scales-within individual grains as well as in domains of several 100 mum and across the entire sample (ca. 2 cm). Such variations have been traditionally attributed to metamorphic cooling or the incorporation of excess argon. However, the textural equilibrium between the phengites and other high pressure phases and the subtle compositional variations within the phengites, especially the preservation of growth textures, alternatively suggest that the observed range in ages may reflect variations of radiogenic argon acquired during phengite formation and subsequent growth, thus dating a discrete event on the prograde path. This implies that the oldest phengite 40Ar/39Ar ages provide the best estimate of a minimum crystallization age, which is in agreement with recently reported U-Pb and Lu-Hf geochronological data. Our results are consistent with available stable isotope data and further suggest that, under fluid-restricted conditions, both stable and radiogenic isotopic systems can survive without significant isotopic exchange during subduction and exhumation from eclogite-facies P-T conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Talea Ori unit is the lowermost known tectonic unit of Crete and the most external part of the Hellenides. Its stratigraphy ranges from Late Carboniferous to Oligocene and outcrops of the lower part are only known in the Talea Ori mountains (central Crete). In this area, a black sandstone at the base of the Galinos Beds, thought to be the oldest formation, contains zircons which were dated using the single grain evaporation method. The majority of these grains yielded Late Carboniferous ages (Variscan), while a small group yielded Early Proterozoic ages. The age distribution of these zircons suggests that, at the Carboniferous-Permian boundary, not much of the older North Gondwanan basement was exposed and that a river system carried detrital material from the Variscan belt towards the forming Neotethyan rift. Additionally, higher up in the stratigraphy benthic foraminifers (miliolids) were found in clasts from a conglomerate which was so far thought to be of Early Triassic age [Epting, M., Kudrass, H.-R., Leppig, U., Schaffer, A., 1972. Geologie der Talea Ori/Kreta. N. Jb. Geol. Palaont. Abh. 141, 259-285.]. These miliolids belong to the species Hoyenella inconstans [Michalik, J., Jendrejakova, O., Borza, K., 1979. Some new foraminifera species of the Fatra-Formation (Uppermost Triassic) in the West Carpathians. Geol. Carpath. 30 (1), 61-91.], thus attributing a Late Triassic (Carnian-Norian?) maximal age to this conglomerate. The carbonate platform from which the miliolids-bearing clasts come is not known. The presence to the north of a continuous hemipelagic record from the Carboniferous to the Triassic (Phyllite-Quartzite and Tripali units), attributed to the Palaeotethys realm, allows the Talea Ori unit and its lateral equivalents (the Ionian zone) to be assigned to the westward continuation of the Cimmerian block and therefore to the northern margin of the East Mediterranean Neotethys ocean. (c) 2006 Elsevier B.V. All rights reserved.