942 resultados para The Indian Scenario
Resumo:
Intensive reduction processes within bottom sediments from the Bay of Bengal lead to marked enrichment of the oxidized layer in iron and manganese. This is not observed in sediments from the Arabian Sea. Oxidized bottom sediments in central areas of the Indian Ocean show high iron concentrations, but fraction of reactive Fe in total Fe is lower. Manganese concentration increases steadily with distance from the shore to the pelagic region of the ocean, and fraction of reactive manganese also increases in the same direction. There is close correlation between total Mn and Mn(4+) in these sediments.
Resumo:
The sub-Antarctic zone (SAZ) lies between the subtropical convergence (STC) and the sub-Antarctic front (SAF), and is considered one of the strongest oceanic sinks of atmospheric CO2. The strong sink results from high winds and seasonally low sea surface fugacities of CO2 (fCO2), relative to atmospheric fCO2. The region of the SAZ, and immediately south, is also subject to mode and intermediate water formation, yielding a penetration of anthropogenic CO2 below the mixed layer. A detailed analysis of continuous measurements made during the same season and year, February - March 1993, shows a coherent pattern of fCO2 distributions at the eastern (WOCE/SR3 at about 145°E) and western edges (WOCE/I6 at 30°E) of the Indian sector of the Southern Ocean. A strong CO2 sink develops in the Austral summer (delta fCO2 < - 50 µatm) in both the eastern (110°-150°E) and western regions (20°-90°E). The strong CO2 sink in summer is due to the formation of a shallow seasonal mixed-layer (about 100 m). The CO2 drawdown in the surface water is consistent with biologically mediated drawdown of carbon over summer. In austral winter, surface fCO2 is close to equilibrium with the atmosphere (delta fCO2 ± 5 µatm), and the net CO2 exchange is small compared to summer. The near-equilibrium values in winter are associated with the formation of deep winter mixed-layers (up to 700 m). For years 1992-95, the annual CO2 uptake for the Indian Ocean sector of the sub Antarctic Zone (40°-50°S, 20°-150°E) is estimated to be about 0.4 GtC/yr. Extrapolating this estimate to the entire sub-Antarctic zone suggests the uptake in the circumpolar SAZ is approaching 1 GtC/yr.
Resumo:
We drilled 13 holes on Ocean Drilling Program Leg 115 in the Indian Ocean and recovered Paleogene sediments that consisted primarily of pelagic components. Planktonic foraminifer assemblages displayed high diversity throughout the Paleogene from the late Paleocene to the Oligocene/Miocene boundary and consist of predominantly warm-water species. Faunas of middle Eocene age are remarkably well represented. Biostratigraphic assignment was, however, very difficult because of the turbiditic character of most of the Paleogene sediments. Reworking is a constant feature of the middle Eocene through early Oligocene planktonic faunas, with reworked faunas frequently overwhelming the younger ones. Preservation within turbidites ranges from excellent to very poor to total destruction of planktonic foraminifers. A major dissolution episode is recorded in the interval that spans most of the late Eocene through the early Oligocene, especially at the deeper sites where the source area was probably well below the lysocline. Redeposition decreases markedly by the mid-Oligocene, but it is only by late Oligocene Zone P22 that normal sedimentation resumes and/or redeposition decreases even at the most affected sites (such as Hole 709C). Comparison with other sites drilled previously in the Indian Ocean reveals that mixed assemblages were already known for sediments from the Mascarene Plateau-Seychelles Bank and surrounding basins during that time span. Because of the disturbances that characterize Paleogene deposits, hiatuses are difficult to detect; nevertheless, a hiatus of less local importance, spanning Subzone P21b, was detected in three holes at different water depths.
Resumo:
Trace element contents in different types of recent botoom sediments of the Indian Ocean are given. Sediment samples were obtained during cruises of the P.P. Shirshov Institute of Oceanology, Moscow.
Resumo:
Stable isotopic data of calcareous nannofossil, monogeneric and monospecific planktic and benthic foraminifera from five Indian Ocean DSDP sites (212, 217, 220, 237, and 253), leads to the following paleoclimatic and paleoceanographic conclusions: - The latest Cretaceous oxygen isotopic record implies a cooling (3-4°C) during the Maastrichtian. At the Cretaceous/Tertiary boundary only a minor warming (about 2°C) has been recorded. The parallel delta13C decrease of more than 1? indicates a significant decrease in productivity. - During the latest Paleocene a positive delta13C excursion was detected in Sites 217 and 237. This transient enrichment in delta13C may be due to productivity changes on continents and/or a change in the storage rate of organic matter in marginal basins or shelf areas. - The most striking feature in the oxygen isotopic record is noted at the Early/Middle Eocene transition. The shift towards more positive values (which were probably enhanced to a certain extent by a preceding diagenetic alteration) delineates a dramatic climatic deterioration at high and mid latitudes during the earlier Tertiary. - Near the Eocene/Oligocene boundary a cooling is evident within the latest Eocene interval. During the earliest Oligocene time a hiatus at Sites 217 and 253 partially obscures the climatic record. - Several climatic fluctuations have been noted during the Oligocene: a cooling at the base of Zone NP 23, a warming at the top of Zone NP 23 through NP 24, and a cooling during Zone NP 25. - The Miocene oxygen isotopic record is dominated by changes in surface and bottom water environments during Zone NN5. The decreasing and then increasing delta18O values, together with the subsequent steepening of the vertical delta18O gradient, point towards major climatic instabilities. These events coincide with the Mid-Miocene build-up of Antarctic ice-sheets. During the latest Miocene to the earliest Pliocene the delta18O record of planktic foraminifera indicates a significant warming of the Indian Ocean at mid-latitudes. - The delta13C record during the Oligocene and Miocene reveals several cycles (delta13C enrichments: NP 24, NN2, NN5, NN9, and base NN 11) which are most likely related to changes in storage rates of organic matter and biological productivity due to climatic changes and transgression/regression cycles. In addition, changes in the circulation patterns may also have influenced the carbon isotopic record.
Resumo:
Determinations of dissolved organic carbon and salinity were made in a region of the subtropical convergence of southern tropical waters of the Indian Ocean. It is shown that nature of vertical distribution of dissolved organic carbon together with salinity reflects water subsiding.
Resumo:
Results of petrographic studies of ultrabasites and gabbro from rift zones of the Indian Ocean are discussed using materials of Cruise 36 of R/V Vityaz. Rocks sampled from two sites 2700 km apart are close to each other in their composition. Petrographically ultrabasic rocks are divided into four subgroups: I - dunite; II - harzburgite, serpentinite; III - plagioclase lherzolite; and IV - metamorphically altered rocks. Petrographic description and chemical composition of basic rock varieties are presented as well as description of rock-forming minerals and their optical properties. Formation of pyroxene and plagioclase is shown to be related to autometasomatosis. Formation of ultrabasite in rift zones is related to complicated processes.