871 resultados para Terrain traversability estimation
Resumo:
This comment corrects the errors in the estimation process that appear in Martins (2001). The first error is in the parametric probit estimation, as the previously presented results do not maximize the log-likelihood function. In the global maximum more variables become significant. As for the semiparametric estimation method, the kernel function used in Martins (2001) can take on both positive and negative values, which implies that the participation probability estimates may be outside the interval [0,1]. We have solved the problem by applying local smoothing in the kernel estimation, as suggested by Klein and Spady (1993).
Resumo:
Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Since conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. Monte Carlo results show that the estimator performs well in comparison to other estimators that have been proposed for estimation of general DLV models.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
According to the hypothesis of Traub, also known as the 'formula of Traub', postmortem values of glucose and lactate found in the cerebrospinal fluid or vitreous humor are considered indicators of antemortem blood glucose levels. However, because the lactate concentration increases in the vitreous and cerebrospinal fluid after death, some authors postulated that using the sum value to estimate antemortem blood glucose levels could lead to an overestimation of the cases of glucose metabolic disorders with fatal outcomes, such as diabetic ketoacidosis. The aim of our study, performed on 470 consecutive forensic cases, was to ascertain the advantages of the sum value to estimate antemortem blood glucose concentrations and, consequently, to rule out fatal diabetic ketoacidosis as the cause of death. Other biochemical parameters, such as blood 3-beta-hydroxybutyrate, acetoacetate, acetone, glycated haemoglobin and urine glucose levels, were also determined. In addition, postmortem native CT scan, autopsy, histology, neuropathology and toxicology were performed to confirm diabetic ketoacidosis as the cause of death. According to our results, the sum value does not add any further information for the estimation of antemortem blood glucose concentration. The vitreous glucose concentration appears to be the most reliable marker to estimate antemortem hyperglycaemia and, along with the determination of other biochemical markers (such as blood acetone and 3-beta-hydroxybutyrate, urine glucose and glycated haemoglobin), to confirm diabetic ketoacidosis as the cause of death.
Resumo:
The dispersal process, by which individuals or other dispersing agents such as gametes or seeds move from birthplace to a new settlement locality, has important consequences for the dynamics of genes, individuals, and species. Many of the questions addressed by ecology and evolutionary biology require a good understanding of species' dispersal patterns. Much effort has thus been devoted to overcoming the difficulties associated with dispersal measurement. In this context, genetic tools have long been the focus of intensive research, providing a great variety of potential solutions to measuring dispersal. This methodological diversity is reviewed here to help (molecular) ecologists find their way toward dispersal inference and interpretation and to stimulate further developments.
Resumo:
BACKGROUND: Recommendations for statin use for primary prevention of coronary heart disease (CHD) are based on estimation of the 10- year CHD risk. We compared the 10-year CHD risk assessments and eligibility percentages for statin therapy using three scoring algorithms currently used in Europe. METHODS: We studied 5683 women and men, aged 35-75, without overt cardiovascular disease (CVD), in a population-based study in Switzerland. We compared the 10-year CHD risk using three scoring schemes, i.e., the Framingham risk score (FRS) from the U.S. National Cholesterol Education Program's Adult Treatment Panel III (ATP III), the PROCAM scoring scheme from the International Atherosclerosis Society (IAS), and the European risk SCORE for low-risk countries, without and with extrapolation to 60 years as recommended by the European Society of Cardiology guidelines (ESC). With FRS and PROCAM, high-risk was defined as a 10- year risk of fatal or non-fatal CHD>20% and a 10-year risk of fatal CVD≥5% with SCORE. We compared the proportions of high-risk participants and eligibility for statin use according to these three schemes. For each guideline, we estimated the impact of increased statin use from current partial compliance to full compliance on potential CHD deaths averted over 10 years, using a success proportion of 27% for statins. RESULTS: Participants classified at high-risk (both genders) were 5.8% according to FRS and 3.0% to the PROCAM, whereas the European risk SCORE classified 12.5% at high-risk (15.4% with extrapolation to 60 years). For the primary prevention of CHD, 18.5% of participants were eligible for statin therapy using ATP III, 16.6% using IAS, and 10.3% using ESC (13.0% with extrapolation) because ESC guidelines recommend statin therapy only in high-risk subjects. In comparison with IAS, agreement to identify eligible adults for statins was good with ATP III, but moderate with ESC. Using a population perspective, a full compliance with ATP III guidelines would reduce up to 17.9% of the 24′ 310 CHD deaths expected over 10 years in Switzerland, 17.3% with IAS and 10.8% with ESC (11.5% with extrapolation). CONCLUSIONS: Full compliance with guidelines for statin therapy would result in substantial health benefits, but proportions of high-risk adults and eligible adults for statin use varied substantially depending on the scoring systems and corresponding guidelines used for estimating CHD risk in Europe.
Resumo:
This paper does two things. First, it presents alternative approaches to the standard methods of estimating productive efficiency using a production function. It favours a parametric approach (viz. the stochastic production frontier approach) over a nonparametric approach (e.g. data envelopment analysis); and, further, one that provides a statistical explanation of efficiency, as well as an estimate of its magnitude. Second, it illustrates the favoured approach (i.e. the ‘single stage procedure’) with estimates of two models of explained inefficiency, using data from the Thai manufacturing sector, after the crisis of 1997. Technical efficiency is modelled as being dependent on capital investment in three major areas (viz. land, machinery and office appliances) where land is intended to proxy the effects of unproductive, speculative capital investment; and both machinery and office appliances are intended to proxy the effects of productive, non-speculative capital investment. The estimates from these models cast new light on the five-year long, post-1997 crisis period in Thailand, suggesting a structural shift from relatively labour intensive to relatively capital intensive production in manufactures from 1998 to 2002.
Resumo:
This study addresses the issue of the presence of a unit root on the growth rate estimation by the least-squares approach. We argue that when the log of a variable contains a unit root, i.e., it is not stationary then the growth rate estimate from the log-linear trend model is not a valid representation of the actual growth of the series. In fact, under such a situation, we show that the growth of the series is the cumulative impact of a stochastic process. As such the growth estimate from such a model is just a spurious representation of the actual growth of the series, which we refer to as a “pseudo growth rate”. Hence such an estimate should be interpreted with caution. On the other hand, we highlight that the statistical representation of a series as containing a unit root is not easy to separate from an alternative description which represents the series as fundamentally deterministic (no unit root) but containing a structural break. In search of a way around this, our study presents a survey of both the theoretical and empirical literature on unit root tests that takes into account possible structural breaks. We show that when a series is trendstationary with breaks, it is possible to use the log-linear trend model to obtain well defined estimates of growth rates for sub-periods which are valid representations of the actual growth of the series. Finally, to highlight the above issues, we carry out an empirical application whereby we estimate meaningful growth rates of real wages per worker for 51 industries from the organised manufacturing sector in India for the period 1973-2003, which are not only unbiased but also asymptotically efficient. We use these growth rate estimates to highlight the evolving inter-industry wage structure in India.
Resumo:
While estimates of models with spatial interaction are very sensitive to the choice of spatial weights, considerable uncertainty surrounds de nition of spatial weights in most studies with cross-section dependence. We show that, in the spatial error model the spatial weights matrix is only partially identi ed, and is fully identifi ed under the structural constraint of symmetry. For the spatial error model, we propose a new methodology for estimation of spatial weights under the assumption of symmetric spatial weights, with extensions to other important spatial models. The methodology is applied to regional housing markets in the UK, providing an estimated spatial weights matrix that generates several new hypotheses about the economic and socio-cultural drivers of spatial di¤usion in housing demand.
Resumo:
Lean meat percentage (LMP) is an important carcass quality parameter. The aim of this work is to obtain a calibration equation for the Computed Tomography (CT) scans with the Partial Least Square Regression (PLS) technique in order to predict the LMP of the carcass and the different cuts and to study and compare two different methodologies of the selection of the variables (Variable Importance for Projection — VIP- and Stepwise) to be included in the prediction equation. The error of prediction with cross-validation (RMSEPCV) of the LMP obtained with PLS and selection based on VIP value was 0.82% and for stepwise selection it was 0.83%. The prediction of the LMP scanning only the ham had a RMSEPCV of 0.97% and if the ham and the loin were scanned the RMSEPCV was 0.90%. Results indicate that for CT data both VIP and stepwise selection are good methods. Moreover the scanning of only the ham allowed us to obtain a good prediction of the LMP of the whole carcass.
Resumo:
Properties of GMM estimators for panel data, which have become very popular in the empirical economic growth literature, are not well known when the number of individuals is small. This paper analyses through Monte Carlo simulations the properties of various GMM and other estimators when the number of individuals is the one typically available in country growth studies. It is found that, provided that some persistency is present in the series, the system GMM estimator has a lower bias and higher efficiency than all the other estimators analysed, including the standard first-differences GMM estimator.