969 resultados para Terminals (Transportation)
Resumo:
Metal-containing conjugated bisthioester 1 was synthesized. It was fabricated into "gold electrode - molecular wires monolayers - gold nanoparticles" junction using self-assembly and nanoparticles deposition techniques. The junction is suitable for investigating the electron transportation property of molecular wires.
Resumo:
This paper adapts Freeman’s measures of degree, closeness and betweenness centrality and applies them to assessing: port centrality in relation to direct connectivity; accessibility to all ports in the network (direct and indirect routes) and; as an intermediary between other ports. An additional parameter added to the formulae ensures that the relative importance of available shipping capacity and foreland market coverage are also accounted for. Validation of this adapted measure is provided by the results obtained from an empirical application. These reveal that foreland market coverage exerts a particularly strong influence on a port’s demand and closeness centrality
Resumo:
Yang, Ying, Yang, Biao, and Wijngaard, Jacob, ' Impact of postponement on transportation: An environmental perspective', International Journal of Logistics Management (2005) 16(2) pp.192-204 RAE2008
Resumo:
BACKGROUND: Serotonin is a neurotransmitter that has been linked to a wide variety of behaviors including feeding and body-weight regulation, social hierarchies, aggression and suicidality, obsessive compulsive disorder, alcoholism, anxiety, and affective disorders. Full understanding of serotonergic systems in the central nervous system involves genomics, neurochemistry, electrophysiology, and behavior. Though associations have been found between functions at these different levels, in most cases the causal mechanisms are unknown. The scientific issues are daunting but important for human health because of the use of selective serotonin reuptake inhibitors and other pharmacological agents to treat disorders in the serotonergic signaling system. METHODS: We construct a mathematical model of serotonin synthesis, release, and reuptake in a single serotonergic neuron terminal. The model includes the effects of autoreceptors, the transport of tryptophan into the terminal, and the metabolism of serotonin, as well as the dependence of release on the firing rate. The model is based on real physiology determined experimentally and is compared to experimental data. RESULTS: We compare the variations in serotonin and dopamine synthesis due to meals and find that dopamine synthesis is insensitive to the availability of tyrosine but serotonin synthesis is sensitive to the availability of tryptophan. We conduct in silico experiments on the clearance of extracellular serotonin, normally and in the presence of fluoxetine, and compare to experimental data. We study the effects of various polymorphisms in the genes for the serotonin transporter and for tryptophan hydroxylase on synthesis, release, and reuptake. We find that, because of the homeostatic feedback mechanisms of the autoreceptors, the polymorphisms have smaller effects than one expects. We compute the expected steady concentrations of serotonin transporter knockout mice and compare to experimental data. Finally, we study how the properties of the the serotonin transporter and the autoreceptors give rise to the time courses of extracellular serotonin in various projection regions after a dose of fluoxetine. CONCLUSIONS: Serotonergic systems must respond robustly to important biological signals, while at the same time maintaining homeostasis in the face of normal biological fluctuations in inputs, expression levels, and firing rates. This is accomplished through the cooperative effect of many different homeostatic mechanisms including special properties of the serotonin transporters and the serotonin autoreceptors. Many difficult questions remain in order to fully understand how serotonin biochemistry affects serotonin electrophysiology and vice versa, and how both are changed in the presence of selective serotonin reuptake inhibitors. Mathematical models are useful tools for investigating some of these questions.
Resumo:
The paper considers a problem of scheduling n jobs in a two-machine open shop to minimise the makespan, provided that preemption is not allowed and the interstage transportation times are involved. In general, this problem is known to be NP-hard. We present a linear time algorithm that finds an optimal schedule if no transportation time exceeds the smallest of the processing times. We also describe an algorithm that creates a heuristic solution to the problem with job-independent transportation times. Our algorithm provides a worst-case performance ratio of 8/5 if the transportation time of a job depends on the assigned processing route. The ratio reduces to 3/2 if all transportation times are equal.
Resumo:
The paper considers a problem of scheduling n jobs in a two-machine open shop to minimize the makespan, provided that preemption is not allowed and the interstage transportation times are involved. This problem is known to be unary NP-hard. We present an algorithm that requires O (n log n) time and provides a worst-case performance ratio of 3/2.
Resumo:
Much of the interest in sustainable cities relates to the inexorable rise in the demand for car travel and the contribution that certain urban forms and land-use relationships can make to reducing energy consumption. Indeed, this demand is fuelled more by increased spatial separation of homes and workplaces, shops and schools than by any rise in trip making. This paper evaluates recent efforts to integrate land-use planning and transportation policy in the Belfast Metropolitan Area by reviewing the policy formulation process at both a regional and city scale. The paper suggests that considerable progress has been made in integrating these two areas of public policy, both institutionally and conceptually. However, concerns are expressed that the rhetoric of sustainability may prove difficult to translate into implementation, leading to a further dislocation of land-use and transportation.
Resumo:
Much of the interest in promoting sustainable development in planning for the city-region focuses on the apparently inexorable rise in the demand for car travel and the contribution that certain urban forms and land-use relationships can make to reducing energy consumption. Within this context, policy prescription has increasingly favoured a compact city approach with increasing urban residential densities to address the physical separation of daily activities and the resultant dependency on the private car. This paper aims to outline and evaluate recent efforts to integrate land use and transport policy in the Belfast Metropolitan Area in Northern Ireland. Although considerable progress has been made, this paper underlines the extent of existing car dependency in the metropolitan area and prevailing negative attitudes to public transport, and argues that although there is a rhetorical support for the principles of sustainability and the practice of land-use/transportation integration, this is combined with a selective reluctance to embrace local changes in residential environment or in lifestyle preferences which might facilitate such principles.
Resumo:
Salt weathering is a crucial process that brings about a change in stone, from the scale of landscapes to stone outcrops and natural building stone facades. It is acknowledged that salt weathering is controlled by fluctuations in temperature and moisture, where repeated oscillations in these parameters can cause re-crystallisation, hydration/de-hydration of salts, bringing about stone surface loss in the form of, for example, granular disaggregation, scaling, and multiple flaking. However, this ‘traditional’ view of how salt weathering proceeds may need to be re-evaluated in the light of current and future climatic trends. Indeed, there is considerable scope for the investigation of consequences of climate change on geomorphological processes in general. Building on contemporary research on the ‘deep wetting’ of natural building stones, it is proposed that (as stone may be wetter for longer), ion diffusion may become a more prominent mechanism for the mixing of molecular constituents, and a shift in focus from physical damage to chemical change is suggested. Data from ion diffusion cell experiments are presented for three different sandstone types, demonstrating that salts may diffuse through porous stone relatively rapidly (in comparison to, for example, dense concrete). Pore water from stones undergoing diffusion experiments was extracted and analysed. Factors controlling ion diffusion
relating to ‘time of wetness’ within stones are discussed, (continued saturation, connectivity of pores, mineralogy, behaviour of salts, sedimentary structure), and potential changes in system dynamics as a result of climate change are addressed. System inputs may change in terms of increased moisture input, translating into a greater depth of wetting front. Salts are likely to be ‘stored’ differently in stones, with salt being in solution for longer periods (during prolonged winter wetness). This has myriad implications in terms of the movement of ions by diffusion and the potential for chemical change in the stone (especially in more mobile constituents), leading to a weakening of the stone matrix/grain boundary cementing. The ‘output’ may be mobilisation and precipitation of elements leading to, for example, uneven cementing in the stone. This reduced strength of the stone, or compromised ability of the stone to absorb stress, is likely to make crystallisation a more efficacious mechanism of decay when it does occur. Thus, a delay in the onset of crystallisation while stonework is wet does not preclude exaggerated or accelerated material loss when it finally happens.