697 resultados para Terentjev, Sergei


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated lymphocytes and lymphoid-tissue inducer cells express lymphotoxins (LTs), which are essential for the organogenesis and maintenance of lymphoreticular microenvironments. Here we describe that T-cell-restricted overexpression of LT induces fulminant thymic involution. This phenotype was prevented by ablation of the LT receptors tumor necrosis factor receptor (TNFR) 1 or LT beta receptor (LTbetaR), representing two non-redundant pathways. Multiple lines of transgenic Ltalphabeta and Ltalpha mice show such a phenotype, which was not observed on overexpression of LTbeta alone. Reciprocal bone marrow transfers between LT-overexpressing and receptor-ablated mice show that involution was not due to a T cell-autonomous defect but was triggered by TNFR1 and LTbetaR signaling to radioresistant stromal cells. Thymic involution was partially prevented by the removal of one allele of LTbetaR but not of TNFR1, establishing a hierarchy in these signaling events. Infection with the lymphocytic choriomeningitis virus triggered a similar thymic pathology in wt, but not in Tnfr1(-/-) mice. These mice displayed elevated TNFalpha in both thymus and plasma, as well as increased LTs on both CD8(+) and CD4(-)CD8(-) thymocytes. These findings suggest that enhanced T cell-derived LT expression helps to control the physiological size of the thymic stroma and accelerates its involution via TNFR1/LTbetaR signaling in pathological conditions and possibly also in normal aging.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background & Aims: HLA-B⁄27 is associated with spontaneous HCV genotype 1 clearance. HLA-B⁄27-restricted CD8+ T cells target three NS5B epitopes. Two of these epitopes are dominantly targeted in the majority of HLA-B⁄27+ patients. In chronic infection, viral escape occurs consistently in these two epitopes. The third epitope (NS5B2820) was dominantly targeted in an acutely infected patient. This was in contrast, however, to the lack of recognition and viral escape in the large majority of HLA-B⁄27+ patients. Here, we set out to determine the host factors contributing to selective targeting of this epitope. Methods: Four-digit HLA class I typing and viral sequence analyses were performed in 78 HLA-B⁄27+ patients with chronic HCV genotype 1 infection. CD8+ T cell analyses were performed in a subset of patients. In addition, HLA/peptide affinity was compared for HLA-B⁄27:02 and 05. Results: The NS5B2820 epitope is only restricted by the HLA-B⁄27 subtype HLA-B⁄27:02 (that is frequent in Mediterranean populations), but not by the prototype HLA-B⁄27 subtype B⁄27:05. Indeed, the epitope is very dominant in HLA-B⁄27:02+ patients and is associated with viral escape mutations at the anchor position for HLA-binding in 12 out of 13 HLA-B⁄27:02+ chronically infected patients. Conclusions: The NS5B2820 epitope is immunodominant in the context of HLA-B⁄27:02, but is not restricted by other HLA-B⁄27 subtypes. This finding suggests an important role of HLA subtypes in the restriction of HCV-specific CD8+ responses. With minor HLA subtypes covering up to 39% of specific populations, these findings may have important implications for the selection of epitopes for global vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Logical theories for representing knowledge are often plagued by the so-called Logical Omniscience Problem. The problem stems from the clash between the desire to model rational agents, which should be capable of simple logical inferences, and the fact that any logical inference, however complex, almost inevitably consists of inference steps that are simple enough. This contradiction points to the fruitlessness of trying to solve the Logical Omniscience Problem qualitatively if the rationality of agents is to be maintained. We provide a quantitative solution to the problem compatible with the two important facets of the reasoning agent: rationality and resource boundedness. More precisely, we provide a test for the logical omniscience problem in a given formal theory of knowledge. The quantitative measures we use are inspired by the complexity theory. We illustrate our framework with a number of examples ranging from the traditional implicit representation of knowledge in modal logic to the language of justification logic, which is capable of spelling out the internal inference process. We use these examples to divide representations of knowledge into logically omniscient and not logically omniscient, thus trying to determine how much information about the reasoning process needs to be present in a theory to avoid logical omniscience.