495 resultados para Terence.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To determine the effects of maternal diabetes on fetal iron status using serum transferrin receptors (STfR) and their ratio to ferritin (TfR-F index) in cord blood. METHODS: Iron, ferritin, erythropoietin, STfR and haemoglobin concentration were measured and TfR-F index calculated in 97 maternal/cord blood pairs. Forty-nine women had type 1 diabetes (diagnosed before pregnancy) and these were compared with forty-eight non- diabetic controls. The women with type 1 diabetes were recruited consecutively from attendance at the joint antenatal endocrine clinic while the control group of women was recruited from consecutive attendance at the remaining antenatal clinics. RESULTS: The infants of the diabetic women had significantly lower levels of ferritin (47 vs 169 mug/l; p

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HOX genes are evolutionarily highly conserved. The HOX proteins which they encode are master regulators of embryonic development and continue to be expressed throughout postnatal life. The 39 human HOX genes are located in four clusters (A-D) on different chromosomes at 7p15, 17q21 [corrected] 12q13, and 2q31 respectively and are assumed to have arisen by duplication and divergence from a primordial homeobox gene. Disorders of limb formation, such as hand-foot-genital syndrome, have been traced to mutations in HOXA13 and HOXD13. Evolutionary conservation provides unlimited scope for experimental investigation of the functional control of the Hox gene network which is providing important insights into human disease. Chromosomal translocations involving the MLL gene, the human homologue of the Drosophila gene trithorax, create fusion genes which exhibit gain of function and are associated with aggressive leukaemias in both adults and children. To date 39 partner genes for MLL have been cloned from patients with leukaemia. Models based on specific translocations of MLL and individual HOX genes are now the subject of intense research aimed at understanding the molecular programs involved, and ultimately the design of chemotherapeutic agents for leukaemia. Investigation of the role of HOX genes in cancer has led to the concept that oncology may recapitulate ontology, a challenging postulate for experimentalists in view of the functional redundancy implicit in the HOX gene network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The HOM-C clustered prototype homeobox genes of Drosophila, and their counterparts, the HOX genes in humans, are highly conserved at the genomic level. These master regulators of development continue to be expressed throughout adulthood in various tissues and organs. The physiological and patho-physiological functions of this network of genes are being avidly pursued within the scientific community, but defined roles for them remain elusive. The order of expression of HOX genes within a cluster is co-ordinated during development, so that the 3' genes are expressed more anteriorly and earlier than the 5' genes. Mutations in HOXA13 and HOXD13 are associated with disorders of limb formation such as hand-foot-genital syndrome (HFGS), synpolydactyly (SPD), and brachydactyly. Haematopoietic progenitors express HOX genes in a pattern characteristic of the lineage and stage of differentiation of the cells. In leukaemia, dysregulated HOX gene expression can occur due to chromosomal translocations involving upstream regulators such as the MLL gene, or the fusion of a HOX gene to another gene such as the nucleoporin, NUP98. Recent investigations of HOX gene expression in leukaemia are providing important insights into disease classification and prediction of clinical outcome. Whereas the oncogenic potential of certain HOX genes in leukaemia has already been defined, their role in other neoplasms is currently being studied. Progress has been hampered by the experimental approach used in many studies in which the expression of small subsets of HOX genes was analysed, and complicated by the functional redundancy implicit in the HOX gene system. Attempts to elucidate the function of HOX genes in malignant transformation will be enhanced by a better understanding of their upstream regulators and downstream target genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The AINT/ERIC/TACC genes encode novel proteins with a coiled coil domain at their C-terminus. The founding member of this expanding family of genes, transforming acidic coiled coil 1 (TACC1), was isolated from a BAC contig spanning the breast cancer amplicon-1 on 8p11. Transfection of cells in vitro with TACC1 resulted in anchorage-independent growth consistent with a more "neoplastic" phenotype. Database searches employing the human TACC1 sequence revealed other novel genes, TACC2 and TACC3, with substantial sequence homology particularly in the C-terminal regions encoding the coiled coil domains. TACC2, located at 10q26, is similar to anti-zuai-1 (AZU-1), a candidate breast tumour suppressor gene, and ECTACC, an endothelial cell TACC which is upregulated by erythropoietin (Epo). The murine homologue of TACC3, murine erythropoietin-induced cDNA (mERIC-1) was also found to be upregulated by Epo in the Friend virus anaemia (FVA) model by differential display-PCR. Human ERIC-1, located at 4p16.3, has been cloned and encodes an 838-amino acid protein whose N- and C-terminal regions are highly homologous to the shorter 558-amino acid murine protein, mERIC-1. In contrast, the central portions of these proteins differ markedly. The murine protein contains four 24 amino acid imperfect repeats. ARNT interacting protein (AINT), a protein expressed during embryonic development in the mouse, binds through its coiled coil region to the aryl hydrocarbon nuclear translocator protein (ARNT) and has a central portion that contains seven of the 24 amino acid repeats found in mERIC-1. Thus mERIC-1 and AINT appear to be developmentally regulated alternative transcripts of the gene. Most members of the TACC family discovered so far contain a novel nine amino acid putative phosphorylation site with the pattern [R/K]-X(3)-[E]-X(3)-Y. Genes with sequence homology to the AINT/ERIC/TACC family in other species include maskin in Xenopus, D-TACC in Drosophila and TACC4 in the rabbit. Maskin contains a peptide sequence conserved among eIF-4E binding proteins that is involved in oocyte development. D-TACC cooperates with another conserved microtubule-associated protein Msps to stabilise spindle poles during cell division. The diversity of function already attributed to this protein family, including both transforming and tumour suppressor properties, should ensure that a new and interesting narrative is about to unfold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract A classic physiologic response to hypoxia in humans is the up-regulation of the ERYTHROPOIETIN (EPO) gene, which is the central regulator of red blood cell mass. The EPO gene, in turn, is activated by hypoxia inducible factor (HIF). HIF is a transcription factor consisting of an alpha subunit (HIF-alpha) and a beta subunit (HIF-beta). Under normoxic conditions, prolyl hydroxylase domain protein (PHD, also known as HIF prolyl hydroxylase and egg laying-defective nine protein) site specifically hydroxylates HIF-alpha in a conserved LXXLAP motif (where underlining indicates the hydroxylacceptor proline). This provides a recognition motif for the von Hippel Lindau protein, a component of an E3 ubiquitin ligase complex that targets hydroxylated HIF-alpha for degradation. Under hypoxic conditions, this inherently oxygen-dependent modification is arrested, thereby stabilizing HIF-alpha and allowing it to activate the EPO gene. We previously identified and characterized an erythrocytosis-associated HIF2A mutation, G537W. More recently, we reported two additional erythrocytosis-associated HIF2A mutations, G537R and M535V. Here, we describe the functional characterization of these two mutants as well as a third novel erythrocytosis-associated mutation, P534L. These mutations affect residues C-terminal to the LXXLAP motif. We find that all result in impaired degradation and thus aberrant stabilization of HIF-2alpha. However, each exhibits a distinct profile with respect to their effects on PHD2 binding and von Hippel Lindau interaction. These findings reinforce the importance of HIF-2alpha in human EPO regulation, demonstrate heterogeneity of functional defects arising from these mutations, and point to a critical role for residues C-terminal to the LXXLAP motif in HIF-alpha.