840 resultados para Teranostica,drug delivery,ipertermia,nanoparticelle magnetiche
Resumo:
Punctal plugs (PPs) are miniature medical implants that were initially developed for the treatment of dry eyes. Since their introduction in 1975, many PPs made from different materials and designs have been developed. PPs, albeit generally successful, suffer from drawbacks such as epiphora and suppurative canaliculitis. To overcome these issues intelligent designs of PPs were proposed (e.g. SmartPLUG™ and Form Fit™). PPs are also gaining interest among pharmaceutical scientists for sustaining drug delivery to the eye. This review aims to provide an overview of PPs for dry eye treatment and drug delivery to treat a range of ocular diseases. It also discusses current challenges in using PPs for ocular diseases.
Resumo:
A microwave (MW)-assisted crosslinking process to prepare hydrogel-forming microneedle (MN) arrays was evaluated. Conventionally, such MN arrays are prepared using processes that includes a thermal crosslinking step. Polymeric MN arrays were prepared using poly(methyl vinyl ether-alt-maleic acid) crosslinked by reaction with poly(ethylene glycol) over 24 h at 80 °C. Polymeric MN arrays were prepared to compare conventional process with the novel MW-assisted crosslinking method. Infrared spectroscopy was used to evaluate the crosslinking degree, evaluating the area of the carbonyl peaks (2000–1500 cm−1). It was shown that, by using the MW-assisted process, MN with a similar crosslinking degree to those prepared conventionally can be obtained in only 45 min. The effects of the crosslinking process on the properties of these materials were also evaluated. For this purpose swelling kinetics, mechanical characterisation, and insertion studies were performed. The results suggest that MN arrays prepared using the MW assisted process had equivalent properties to those prepared conventionally but can be produced 30 times faster. Finally, an in vitro caffeine permeation across excised porcine skin was performed using conventional and MW-prepared MN arrays. The release profiles obtained can be considered equivalent, delivering in both cases 3000–3500 μg of caffeine after 24 h.
Resumo:
This research book covers the major aspects relating to the use of novel delivery systems in enhancing both transdermal and intradermal drug delivery. It provides a review of transdermal and intradermal drug delivery, including the history of the field and the various methods employed to produce delivery systems from different materials such as device design, construction and evaluation, so as to provide a sound background to the use of novel systems in enhanced delivery applications.
Furthermore, it presents in-depth analyses of recent developments in this exponentially growing field, with a focus on microneedle arrays, needle-free injections, nanoparticulate systems and peptide-carrier-type systems. It also covers conventional physical enhancement strategies, such as tape-stripping, sonophoresis, iontophoresis, electroporation and thermal/suction/laser ablation Discussions about the penetration of the stratum corneum by the various novel strategies highlight the importance of the application method. Comprehensive and critical reviews of transdermal and intradermal delivery research using such systems focus on the outcomes of in vivoanimal and human studies. The book includes laboratory, clinical and commercial case studies featuring safety and patient acceptability studies carried out to date, and depicts a growing area for use of these novel systems is in intradermal vaccine delivery. The final chapters review recent patents in this field and describe the work ongoing in industry.
Resumo:
Ophthalmic drug delivery system is very interesting and challenging due to the normal physiologically factor of eyes which reduces the bioavailability of ocular products. The development of a new ophthalmic dosage forms with the existing drugs to improve efficacy and bioavailability including better patients' compliance and convenience has become trend in the most pharmaceutical industries. The present review encompasses various conventional and novel ocular drug delivery systems, methods of preparation, characterization, recent researches carried out. Furthermore, the information on various commercially available in situ gel preparations and the existing patents of in situ drug delivery systems i.e. in situ gel formation of pectin, in situ gel for therapeutic use, medical uses of in situ formed gels and in situ gelling systems as sustained delivery for front of eye also covered in this review.
Resumo:
We describe, for the first time, stimuli-responsive hydrogel-forming microneedle (MN) arrays that enable delivery of a clinically-relevant model drug (ibuprofen) upon application of light. MN arrays were prepared using a polymer prepared from 2-hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA) by micromolding. The obtained MN arrays showed good mechanical properties. The system was loaded with up to 5% (w/w) ibuprofen included in a light-responsive 3,5-dimethoxybenzoin conjugate. Raman spectroscopy confirmed the presence of the conjugate inside the polymeric MN matrix. In vitro, this system was able to deliver up to three doses of 50 mg of ibuprofen upon application of an optical trigger over a prolonged period of time (up to 160 hours). This makes the system appealing as a controlled release device for prolonged periods of time. We believe that this technology has potential for use in ?on-demand? delivery of a wide range of drugs in a variety of applications relevant to enhanced patient care.