976 resultados para Temperature Control
Resumo:
An operational space map is an efficient tool to compare a large number of operational strategies to find an optimal choice of setpoints based on a multicriterion. Typically, such a multicriterion includes a weighted sum of cost of operation and effluent quality. Due to the relative high cost of aeration such a definition of optimality result in a relatively high fraction of the effluent total nitrogen in the form of ammonium. Such a strategy may however introduce a risk into operation because a low degree of ammonium removal leads to a low amount of nitrifiers. This in turn leads to a reduced ability to reject event disturbances, such as large variations in the ammonium load, drop in temperature, the presence of toxic/inhibitory compounds in the influent etc. Hedging is a risk minimisation tool, with the aim to "reduce one's risk of loss on a bet or speculation by compensating transactions on the other side" (The Concise Oxford Dictionary (1995)). In wastewater treatment plant operation hedging can be applied by choosing a higher level of ammonium removal to increase the amount of nitrifiers. This is a sensible way to introduce disturbance rejection ability into the multi criterion. In practice, this is done by deciding upon an internal effluent ammonium criterion. In some countries such as Germany, a separate criterion already applies to the level of ammonium in the effluent. However, in most countries the effluent criterion applies to total nitrogen only. In these cases, an internal effluent ammonium criterion should be selected in order to secure proper disturbance rejection ability.
Resumo:
Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)(6) as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm(-2) and a partial pressure ratio of O-2 to Cr(CO)(6) of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s(-1) and mean particle sizes of 1.85 mu m were measured for these films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dissertação de Mestrado, Biotecnologia em Controlo Biológico, 18 de Dezembro de 2013, Universidade dos Açores.
Resumo:
This paper presents a distributed model predictive control (DMPC) for indoor thermal comfort that simultaneously optimizes the consumption of a limited shared energy resource. The control objective of each subsystem is to minimize the heating/cooling energy cost while maintaining the indoor temperature and used power inside bounds. In a distributed coordinated environment, the control uses multiple dynamically decoupled agents (one for each subsystem/house) aiming to achieve satisfaction of coupling constraints. According to the hourly power demand profile, each house assigns a priority level that indicates how much is willing to bid in auction for consume the limited clean resource. This procedure allows the bidding value vary hourly and consequently, the agents order to access to the clean energy also varies. Despite of power constraints, all houses have also thermal comfort constraints that must be fulfilled. The system is simulated with several houses in a distributed environment.
Resumo:
Asthma is a chronic inflammatory disorder of the respiratory airways affecting people of all ages, and constitutes a serious public health problem worldwide (6). Such a chronic inflammation is invariably associated with injury and repair of the bronchial epithelium known as remodelling (11). Inflammation, remodelling, and altered neural control of the airways are responsible for both recurrent exacerbations of asthma and increasingly permanent airflow obstruction (11, 29, 34). Excessive airway narrowing is caused by altered smooth muscle behaviour, in close interaction with swelling of the airway walls, parenchyma retractile forces, and enhanced intraluminal secretions (29, 38). All these functional and structural changes are associated with the characteristic symptoms of asthma – cough, chest tightness, and wheezing –and have a significant impact on patients’ daily lives, on their families and also on society (1, 24, 29). Recent epidemiological studies show an increase in the prevalence of asthma, mainly in industrial countries (12, 25, 37). The reasons for this increase may depend on host factors (e.g., genetic disposition) or on environmental factors like air pollution or contact with allergens (6, 22, 29). Physical exercise is probably the most common trigger for brief episodes of symptoms, and is assumed to induce airflow limitations in most asthmatic children and young adults (16, 24, 29, 33). Exercise-induced asthma (EIA) is defined as an intermittent narrowing of the airways, generally associated with respiratory symptoms (chest tightness, cough, wheezing and dyspnoea), occurring after 3 to 10 minutes of vigorous exercise with a maximal severity during 5 to 15 minutes after the end of the exercise (9, 14, 16, 24, 33). The definitive diagnosis of EIA is confirmed by the measurement of pre- and post-exercise expiratory flows documenting either a 15% fall in the forced expiratory volume in 1 second (FEV1), or a ≥15 to 20% fall in peak expiratory flow (PEF) (9, 24, 29). Some types of physical exercise have been associated with the occurrence of bronchial symptoms and asthma (5, 15, 17). For instance, demanding activities such as basketball or soccer could cause more severe attacks than less vigorous ones such as baseball or jogging (33). The mechanisms of exercise-induced airflow limitations seem to be related to changes in the respiratory mucosa induced by hyperventilation (9, 29). The heat loss from the airways during exercise, and possibly its post-exercise rewarming may contribute to the exercise-induced bronchoconstriction (EIB) (27). Additionally, the concomitant dehydration from the respiratory mucosa during exercise leads to an increased interstitial osmolarity, which may also contribute to bronchoconstriction (4, 36). So, the risk of EIB in asthmatically predisposed subjects seems to be higher with greater ventilation rates and the cooler and drier the inspired air is (23). The incidence of EIA in physically demanding coldweather sports like competitive figure skating and ice hockey has been found to occur in up to 30 to 35% of the participants (32). In contrast, swimming is often recommended to asthmatic individuals, because it improves the functionality of respiratory muscles and, moreover, it seems to have a concomitant beneficial effect on the prevalence of asthma exacerbations (14, 26), supporting the idea that the risk of EIB would be smaller in warm and humid environments. This topic, however, remains controversial since the chlorified water of swimming pools has been suspected as a potential trigger factor for some asthmatic patients (7, 8, 20, 21). In fact, the higher asthma incidence observed in industrialised countries has recently been linked to the exposition to chloride (7, 8, 30). Although clinical and epidemiological data suggest an influence of humidity and temperature of the inspired air on the bronchial response of asthmatic subjects during exercise, some of those studies did not accurately control the intensity of the exercise (2, 13), raising speculation of whether the experienced exercise overload was comparable for all subjects. Additionally, most of the studies did not include a control group (2, 10, 19, 39), which may lead to doubts about whether asthma per se has conditioned the observed results. Moreover, since the main targeted age group of these studies has been adults (10, 19, 39), any extrapolation to childhood/adolescence might be questionable regarding the different lung maturation. Considering the higher incidence of asthma in youngsters (30) and the fact that only the works of Amirav and coworkers (2, 3) have focused on this age group, a scarcity of scientific data can be identified. Additionally, since the main environmental trigger factors, i.e., temperature and humidity, were tested separately (10, 28, 39) it would be useful to analyse these two variables simultaneously because of their synergic effect on water and heat loss by the airways (31, 33). It also appears important to estimate the airway responsiveness to exercise within moderate environmental ranges of temperature and humidity, trying to avoid extreme temperatures and humidity conditions used by others (2, 3). So, the aim of this study was to analyse the influence of moderate changes in air temperature and humidity simultaneously on the acute ventilatory response to exercise in asthmatic children. To overcome the above referred to methodological limitations, we used a 15 minute progressive exercise trial on a cycle ergometer at 3 different workload intensities, and we collected data related to heart rate, respiratory quotient, minute ventilation and oxygen uptake in order to ensure that physiological exercise repercussions were the same in both environments. The tests were done in a “normal” climatic environment (in a gymnasium) and in a hot and humid environment (swimming pool); for the latter, direct chloride exposition was avoided.
Resumo:
The phase behaviour of a number of N-alkylimidazolium salts was studied using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. Two of these compounds exhibit lamellar mesophases at temperatures above 50 degrees C. In these systems, the liquid crystalline behaviour may be induced at room temperature by shear. Sheared films of these materials, observed between crossed polarisers, have a morphology that is typical of (wet) liquid foams: they partition into dark domains separated by brighter (birefringent) walls, which are approximately arcs of circle and meet at "Plateau borders" with three or more sides. Where walls meet three at a time, they do so at approximately 120 degrees angles. These patterns coarsen with time and both T1 and T2 processes have been observed, as in foams. The time evolution of domains is also consistent with von Neumann's law. We conjecture that the bright walls are regions of high concentration of defects produced by shear, and that the system is dominated by the interfacial tension between these walls and the uniform domains. The control of self-organised monodomains, as observed in these systems, is expected to play an important role in potential applications.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
INTRODUCTION: Visceral leishmaniasis is a serious public health problem that requires global control strategies, especially with respect to factors that may intervene in reducing the incidence of endemicity. In this work, rainfall density and temperature were correlated with the incidence of human cases in an area endemic for leishmaniasis in São Luis do Maranhão, Northeastern Brazil. METHODS: Notification of human cases by the National Health Foundation/Regional Coordination of Maranhão (FUNASA/COREMA) from 2002 to 2010 was used. Ecological data (mean temperature and rainfall density) were provided by the Meteorological Office of State. RESULTS: A significant association was verified between the number of VL cases and rainfall rate but not in the analysis concerning mean temperatures. CONCLUSIONS: These data suggest that the control actions in visceral leishmaniasis should be performed during rainy season in the State of Maranhão, which is in the first half of the year.
Resumo:
Introduction The control of bacillary dysentery (BD) remains a big challenge for China. Methods Negative binomial multivariable regression was used to study relationships between meteorological variables and the occurrence of BD during the period of 2006-2012. Results Each 1°C rise of temperature corresponded to an increase of 3.60% (95%CI, 3.03% to 4.18%) in the monthly number of BD cases, whereas a 1 hPa rise in atmospheric pressure corresponded to a decrease in the number of BD cases by 2.85% (95%CI = 3.34% to 2.37% decrease). Conclusions Temperature and atmospheric pressure may be considered as predictors for the occurrence of BD in Guangzhou.
Resumo:
Growth, metabolic rate, and energy reserves of Cherax quadricarinatus (von Martens, 1868) juveniles were evaluated in crayfish acclimated for 16 weeks to either 25ºC (temperature near optimum) or 20ºC (marginal for the species). Additionally, the modulating effect of ecdsyone on acclimation was studied. After 12 weeks of exposure, weight gain of both experimental groups acclimated to 25ºC (control: C25, and ecdysone treated: E25) was significantly higher than that of those groups acclimated to 20ºC (C20 and E20). A total compensation in metabolic rate was seen after acclimation from 25ºC to 20ºC; for both the control group and the group treated with ecdysone. A Q10value significantly higher was only observed in the group acclimated to 20ºC and treated with ecdysone. A reduction of glycogen reserves in both hepatopancreas and muscle, as well as a lower protein content in muscle, was seen in both groups acclimated to 20ºC. Correspondingly, glycemia was always higher in these groups. Increased lipid levels were seen in the hepatopancreas of animals acclimated to 20ºC, while a higher lipid level was also observed in muscle at 20ºC, but only in ecdysone-treated crayfish.
Resumo:
The Kilombero Malaria Project (KMP) attemps to define opperationally useful indicators of levels of transmission and disease and health system relevant monitoring indicators to evaluate the impact of disease control at the community or health facility level. The KMP is longitudinal community based study (N = 1024) in rural Southern Tanzania, investigating risk factors for malarial morbidity and developing household based malaria control strategies. Biweekly morbidity and bimonthly serological, parasitological and drug consumption surveys are carried out in all study households. Mosquito densities are measured biweekly in 50 sentinel houses by timed light traps. Determinants of transmission and indicators of exposure were not strongly aggregated within households. Subjective morbidity (recalled fever), objective morbidity (elevated body temperature and high parasitaemia) and chloroquine consumption were strongly aggregated within a few households. Nested analysis of anti-NANP40 antibody suggest that only approximately 30% of the titer variance can explained by household clustering and that the largest proportion of antibody titer variability must be explained by non-measured behavioral determinants relating to an individual's level of exposure within a household. Indicators for evaluation and monitoring and outcome measures are described within the context of health service management to describe control measure output in terms of community effectiveness.
Resumo:
Les piles de combustible permeten la transformació eficient de l’energia química de certs combustibles a energia elèctrica a través d’un procés electroquímic. De les diferents tecnologies de piles de combustible, les piles de combustible de tipus PEM són les més competitives i tenen una gran varietat d’aplicacions. No obstant, han de ser alimentades únicament per hidrogen. Per altra banda, l’etanol, un combustible interessant en el marc dels combustibles renovables, és una possible font d’hidrogen. Aquest treball estudia la reformació d’etanol per a l’obtenció d’hidrogen per a alimentar piles de combustible PEM. Només existeixen algunes publicacions que tractin l’obtenció d’hidrogen a partir d’etanol, i aquestes no inclouen l’estudi dinàmic del sistema. Els objectius del treball són el modelat i l’estudi dinàmic de reformadors d’etanol de baixa temperatura. Concretament, proposa un model dinàmic d’un reformador catalític d’etanol amb vapor basat en un catalitzador de cobalt. Aquesta reformació permet obtenir valors alts d’eficiència i valors òptims de monòxid de carboni que evitaran l’enverinament d’una la pila de combustible de tipus PEM. El model, no lineal, es basa en la cinètica obtinguda de diferents assaigs de laboratori. El reformador modelat opera en tres etapes: deshidrogenació d’etanol a acetaldehid i hidrogen, reformat amb vapor d’acetaldehid, i la reacció WGS (Water Gas Shift). El treball també estudia la sensibilitat i controlabilitat del sistema, caracteritzant així el sistema que caldrà controlar. L’anàlisi de controlabilitat es realitza sobre la resposta de dinàmica ràpida obtinguda del balanç de massa del reformador. El model no lineal és linealitzat amb la finalitat d’aplicar eines d’anàlisi com RGA, CN i MRI. El treball ofereix la informació necessària per a avaluar la possible implementació en un laboratori de piles de combustibles PEM alimentades per hidrogen provinent d’un reformador d’etanol.
Resumo:
Heavy domestic and peridomestic infestations of Triatoma infestans were controlled in two villages in southern Bolivia by the application of deltamethrin SC25 (2.5% suspension concentrate) at a target dose of 25 mg a.i./m². Actual applied dose was monitored by HPLC analysis of filter papers placed at various heights on the house walls, and was shown to range from 0 to 59.6 about a mean of 28.5 mg a.i./m². Wall bioassays showed high mortality of T. infestans during the first month after the application of deltamethrin. Mortality declined to zero as summer temperatures increased, but reappeared with the onset of the following winter. In contrast, knockdown was apparent throughout the trial, showing no discernible temperature dependence. House infestation rates, measured by manual sampling and use of paper sheets to collect bug faeces, declined from 79% at the beginning of the trial to zero at the 6 month evaluation. All but one of the houses were still free of T. infestans at the final evaluation 12 months after spraying, although a small number of bugs were found at this time in 5 of 355 peridomestic dependencies. Comparative cost studies endorse the recommendation of large-scale application of deltamethrin, or pyrethroid of similar cost-effectiveness, as a means to eliminate domestic T. infestans populations in order to interrupt transmission of Chagas disease
Resumo:
Typically at dawn on a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to induce a timely heat shock response (HSR) and accumulate protective heat shock proteins in anticipation of harmful temperatures at mid-day. Here, we found that the cyclic nucleotide gated calcium channel (CNGC) CNGCb gene from Physcomitrella patens and its Arabidopsis thaliana ortholog CNGC2, encode a component of cyclic nucleotide gated Ca(2+) channels that act as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to an HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild-type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused a hyper-thermoresponsive Ca(2+) influx and altered Ca(2+) signaling. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermoresponsive Ca(2+) channels in wild-type cells. Deletion of CNGCb led to a total absence of one and increased the open probability of the remaining two thermoresponsive Ca(2+) channels. Thus, CNGC2 and CNGCb are expected to form heteromeric Ca(2+) channels with other related CNGCs. These channels in the plasma membrane respond to increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.