913 resultados para Tecnologia mineral
Resumo:
The molecular structure of the mixed anion mineral Clinotyrolite Ca2Cu9[(As,S)O4]4(OH)10•10(H2O) has been determined by the combination of Raman and infrared spectroscopy. Characteristic bands associated with arsenate, sulphate and hydroxyl units are identified. Broad bands in the OH stretching region are observed and are resolved into component bands. Estimates of hydrogen bond distances were made using a Libowitzky function and both short and long hydrogen bonds are identified. Two intense Raman bands at 842 and ~796 cm-1 are assigned to the ν1 (AsO4)3- symmetric stretching and ν3 (AsO4)3- antisymmetric stretching modes. The comparatively sharp Raman band at 980 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad Raman spectral profile centred upon 1100 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode.
Resumo:
Ajoite (K,Na)Cu7AlSi9O24(OH)6•3H2O is a mineral named after the Ajo district of Arizona. Raman and infrared spectroscopy were used to characterise the molecular structure of ajoite. The structure of the mineral shows disorder which is reflected in the difficulty of obtaining quality Raman spectra. The Raman spectrum is characterised by a broad spectral profile with a band at 1048 cm-1 assigned to the ν1 (A1g) symmetric stretching vibration. Strong bands at 962, 1015 and 1139 cm-1 are assigned to the ν3 SiO4 antisymmetric stretching vibrations. Multiple ν4 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple AlO and CuO stretching bands are observed. Raman spectroscopy and confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the ajoite structure. Based upon the infrared spectra, water is involved in the ajoite structure, probably as zeolitic water.
Resumo:
The molecular structure of the sodium borate mineral ameghinite NaB3O3(OH)4 has been determined by the use of vibrational spectroscopy. The crystal structure consists of isolated [B3O3(OH)4]- units formed by one tetrahedron and two triangles. H bonds and Na atoms link these polyanions to form a 3-dimensional framework. The Raman spectrum is dominated by an intense band at 1027 cm-1, attributed to BO stretching vibrations of both the trigonal and tetrahedral boron. A series of Raman bands at 1213, 1245 and 1281cm-1 are ascribed to BOH in-plane bending modes. The infrared spectra are characterized by strong overlap of broad multiple bands. An intense Raman band found at 620 cm-1 is attributed to the bending modes of trigonal and tetrahedral boron. Multiple Raman bands in the OH stretching region are observed at 3206, 3249 and 3385 cm-1. Raman spectroscopy coupled with infrared spectroscopy has enabled aspects about the molecular structure of the borate mineral ameghinite to be assessed.
Resumo:
Vibrational spectroscopy has been used to characterise the mineral creaseyite Cu2Pb2(Fe,Al)2(Si5O17)·6H2O. The mineral is found in the oxidised zone of base metal deposits and interestingly is associated with copper silicate minerals including ajoite, kinoite, chrysocolla as well as wulfenite, willemite, mimetite and wickenburgite. Creaseyite is a mineral with zeolitic properties. A Raman band at 998 cm−1 is assigned to the SiO stretching vibration of SiO3 units. The Raman band at 1071 cm−1 is assigned to the SiO stretching vibrations of the Si2O5 units. Raman bands are found at 2750, 2902, 3162, 3470 and 3525 cm−1. The band at 3525 cm−1 is attributed to zeolitic water. Other bands are assigned to water coordinated to the metal cations. Vibrational spectroscopy enables aspects of the molecular structure of creaseyite to be determined.
Resumo:
The mineral svanbergite SrAl 3(PO 4,SO 4) 2(OH) 6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites and has been characterised by vibrational spectroscopy. Bands at various wavenumbers were assigned to the different vibrational modes of svanbergite, which were then associated with the structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated. Comparison of the hydrogen bond distances and the calculated hydrogen bond distances from the structure models indicates that hydrogen bonding in svanbergite occurs between the two OH units rather than OH to SO42- units.
Resumo:
The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.
Resumo:
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is kemmlitzite (Sr,Ce)Al3(AsO4)(SO4)(OH)6. The objective of this research is to determine the molecular structure of the mineral kemmlitzite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the AsO43- , SO42- and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 984 cm-1 assigned to the SO42- symmetric stretching mode. Raman bands at 690, 772 and 825 cm-1 may be assigned to the AsO43- antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm-1 are attributable to the doubly degenerate 2 (SO4)2- bending mode. Vibrational spectroscopy is important in the assessment of the molecular structure of the kemmlitzite, especially when the mineral is non-diffracting or poorly diffracting.
Resumo:
Effective flocculation and dewatering of mineral processing streams containing clays are microstructure dependent in clay-water systems. Initial clay flocculation is crucial in the design and for the development of a new methodology of gas exploitation. Microstructural engineering of clay aggregates using covalent cations and Keggin macromolecules have been monitored using the new state of the art Transmission X-ray Microscope (TXM) with 60 nm tomography resolution installed in a Taiwanese synchrotron. The 3-D reconstructions from TXM images show complex aggregation structures in montmorillonite aqueous suspensions after treatment with Na+, Ca2+ and Al13 Keggin macromolecules. Na-montmorillonite displays elongated, parallel, well-orientated and closed-void cellular networks, 0.5–3 μm in diameter. After treatment by covalent cations, the coagulated structure displays much smaller, randomly orientated and openly connected cells, 300–600 nm in diameter. The average distances measured between montmorillonite sheets was around 450 nm, which is less than half of the cell dimension measured in Na-montmorillonite. The most dramatic structural changes were observed after treatment by Al13 Keggin; aggregates then became arranged in compacted domains of a 300 nm average diameter composed of thick face-to-face oriented sheets, which forms porous aggregates with larger intra-aggregate open and connected voids.
Resumo:
The structure of the borate mineral sakhaite Ca12Mg4(BO3)7(CO3)4Cl(OH)2·H2O, a borate–carbonate of calcium and magnesium has been assessed using vibrational spectroscopy. Assignment of bands is undertaken by comparison with the data from other published results. Intense Raman band at 1134 cm−1 with a shoulder at 1123 cm−1 is assigned to the symmetric stretching mode. The Raman spectrum displays bands at 1479, 1524 and 1560 cm−1 which are assigned to the antisymmetric stretching vibrations. The observation of multiple carbonate stretching bands supports the concept that the carbonate units are non-equivalent. The Raman band at 968 cm−1 with a shoulder at 950 cm−1 is assigned to the symmetric stretching mode of trigonal boron. Raman bands at 627 and 651 cm−1 are assigned to the out-of-plane bending modes of trigonal and tetrahedral boron. Raman spectroscopy coupled with infrared spectroscopy enables the molecular structure of the mineral sakhaite to be assessed.
Resumo:
Jeremejevite is a borate mineral of aluminium and is of variable colour, making the mineral and important inexpensive jewel. The mineral contains variable amounts of F and OH, depending on origin. A comparison of the vibrational spectroscopic data is made with the published data of borate minerals. Raman spectra were averaged over a range of crystal orientations. Two intense Raman bands observed at 961 and 1067 cm−1 are assigned to the symmetric stretching and antisymmetric stretching modes of trigonal boron. Infrared spectrum, bands observed at 1229, 1304, 1350, 1388 and 1448 cm−1 are attributed to BOH in-plane bending modes. Intense Raman band found at 372 cm−1 with other bands of significant intensity at 327 and 417 cm−1 is assigned to trigonal borate bending modes. A quite intense Raman band is found at 3673 cm−1 with other sharp Raman bands found at 3521, 3625 and 3703 cm−1 are assigned to the stretching modes of OH. Raman and infrared spectroscopy has been used to assess the molecular structure of the mineral jeremejevite. Such research is important in the study of borate based nanomaterials.
Resumo:
Boracite is a magnesium borate mineral with formula: Mg3B7O13Cl and occurs as blue green, colorless, gray, yellow to white crystals in the orthorhombic – pyramidal crystal system. An intense Raman band at 1009 cm−1 was assigned to the BO stretching vibration of the B7O13 units. Raman bands at 1121, 1136, 1143 cm−1 are attributed to the in-plane bending vibrations of trigonal boron. Four sharp Raman bands observed at 415, 494, 621 and 671 cm−1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3405 and 3494 cm−1, thus indicating that some Cl anions have been replaced with OH units. The molecular structure of a natural boracite has been assessed by using vibrational spectroscopy.
Resumo:
In this research, we have used vibrational spectroscopy to study the phosphate mineral kosnarite KZr2(PO4)3. Interest in this mineral rests with the ability of zirconium phosphates (ZP) to lock in radioactive elements. ZP have the capacity to concentrate and immobilize the actinide fraction of radioactive phases in homogeneous zirconium phosphate phases. The Raman spectrum of kosnarite is characterized by a very intense band at 1,026 cm−1 assigned to the symmetric stretching vibration of the PO4 3− ν1 symmetric stretching vibration. The series of bands at 561, 595 and 638 cm−1 are assigned to the ν4 out-of-plane bending modes of the PO4 3− units. The intense band at 437 cm−1 with other bands of lower wavenumber at 387, 405 and 421 cm−1 is assigned to the ν2 in-plane bending modes of the PO4 3− units. The number of bands in the antisymmetric stretching region supports the concept that the symmetry of the phosphate anion in the kosnarite structure is preserved. The width of the infrared spectral profile and its complexity in contrast to the well-resolved Raman spectrum show that the pegmatitic phosphates are better studied with Raman spectroscopy.
Resumo:
The mineral beryllonite has been characterized by the combination of Raman spectroscopy and infrared spectroscopy. SEM–EDX was used for the chemical analysis of the mineral. The intense sharp Raman band at 1011 cm-1, was assigned to the phosphate symmetric stretching mode. Raman bands at 1046, 1053, 1068 and the low intensity bands at 1147, 1160 and 1175 cm-1 are attributed to the phosphate antisymmetric stretching vibrations. The number of bands in the antisymmetric stretching region supports the concept of symmetry reduction of the phosphate anion in the beryllonite structure. This concept is supported by the number of bands found in the out-of-plane bending region. Multiple bands are also found in the in-plane bending region with Raman bands at 399, 418, 431 and 466 cm-1. Strong Raman bands at 304 and 354 cm-1 are attributed to metal oxygen vibrations. Vibrational spectroscopy served to determine the molecular structure of the mineral. The pegmatitic phosphate minerals such as beryllonite are more readily studied by Raman spectroscopy than infrared spectroscopy.
Resumo:
Detailed investigation of an intermediate member of the reddingite–phosphoferrite series, using infrared and Raman spectroscopy, scanning electron microcopy and electron microprobe analysis, has been carried out on a homogeneous sample from a lithium-bearing pegmatite named Cigana mine, near Conselheiro Pena, Minas Gerais, Brazil. The determined formula is (Mn1.60Fe1.21Ca0.01Mg0.01)∑2.83(PO4)2.12⋅(H2O2.85F0.01)∑2.86 indicating predominance in the reddingite member. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of reddingite-phosphoferrite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of reddingite–phosphoferrite.