737 resultados para TRIPLET EMITTERS
Resumo:
Both [C4CO]−· and [C2COC2]−· are formed in the ion source of a VG ZAB 2HF mass spectrometer by the respective processes HO− + Me3Si–CC–CC–CO–CMe3 → [C4CO]−· + Me3SiOH + Me3C·, and Me3Si–CC–CO–CC–SiMe3 + SF6 + e → [C2COC2]−· + 2Me3SiF + SF4. The second synthetic pathway involves a double desilylation reaction similar to that first reported by Squires. The two radical anion isomers produce different and characteristic charge reversal spectra upon collisional activation. In contrast, following collision induced charge stripping, both radical anions produce neutral C4CO as evidenced by the identical neutralisation reionisation (−NR+) spectra. The exclusive rearrangement of C213COC2 to C413CO indicates that 12C–O bond formation is not involved in the reaction. Ab initio calculations (at the RCCSD(T)/aug-cc-pVDZ//B3LYP/6-31G∗ level of theory) have been used to investigate the reaction coordinates on the potential surfaces for both singlet and triplet rearrangements of neutral C2COC2. Singlet C2COC2 is less stable than singlet C4CO by 78.8 kcal mol−1 and requires only 8.5 kcal mol−1 of additional energy to effect conversion to C4CO by a rearrangement sequence involving three C–C ring opening/cyclisation steps.
Resumo:
Ethylenedione C2O2 is one of the elusive small molecules which have remained undetected even after numerous attempts with different experimental techniques, This is surprising, since theoretical studies predicted the triplet state of C2O2 to be stable towards spin-allowed dissociation and hence long-lived. Here we report a comprehensive study of charged and neutral ethylenedione by means of charge reversal and neutralization -reionization mass spectrometry. These experimental results, in conjunction with theoretical calculations, suggest that neutral ethylenedione is intrinsically short-lived rather than being elusive, Both the singlet and triplet states of C2O2 are predicted to dissociate rapidly into two ground-state CO molecules, and for the triplet species, this dissociation involves facile curve-crossing to the singlet surface within a few nanoseconds.
Resumo:
Five different anionic [C3′H4′O]•- isomers, i.e. the radical anions of acrolein, acetyl carbene, formyl methyl carbene, methoxy vinylidene, and oxyallyl are generated in an ion beam mass spectrometer and subjected to neutralization-reionization (NR) mass spectrometric experiments including neutral and ion decomposition difference (NIDD) mass spectrometry; the latter allows for the examination of the neutrals' unimolecular reactivity. Further, the anionic, the singlet and triplet neutral, and the cationic [C3′H4′O] •-/0/•+ potentialenergy surfaces are calculated at the B3LYP/6-311++G(d,p) level of theory. For some species, notably the singlet state of oxyallyl, the theoretical treatment is complemented by G2, CASSCF, and MR-CI calculations. Theory and experiment are in good agreement in that at the neutral stage (i) acrolein does not react within the μsec timescale, (ii) acetyl and formyl methyl carbenes isomerize to methyl ketene, (iii) methoxy vinylidene rearranges to methoxy acetylene, (iv) singlet 1A1 oxyallyl undergoes ring closure to cyclopropanone, and (v) triplet 3B2 oxyallyl may have a lifetime sufficient to survive a NR experiment.
Resumo:
The photoelectron spectrum of the oxyallyl (OXA) radical anion has been measured. The radical anion has been generated in the reaction of the atomic oxygen radical anion (O center dot-) with acetone. Three low-lying electronic states of OXA have been observed in the spectrum. Electronic structure calculations have been performed for the triplet states (B-3(2) and B-3(1)) of OXA and the ground doublet state ((2)A(2)) of the radical anion using density, functional theory (DFT). Spectral simulations have been carried out for the triplet statics based on the results of the DFT calculations. The simulation identifies a vibrational progression of the CCC bending mode of the B-3(2) state of OXA in the lower electron binding energy (eBE) portion of the spectrum. On top of the B-3(2) feature, however, the experimental spectrum exhibits additional photoelectron peaks whose angular distribution is distinct from that for the vibronic peaks of the B-3(2) state. Complete active space self-consistent field (CASSCF) method and second-order perturbation theory based on the CASSCF wave function (CASPT2) have been employed to study the lowest singlet state ((1)A(1)) of OXA. The simulation based on the results of these electronic structure calculations establishes that the overlapping peaks represent the vibrational ground level of the (1)A(1) state and its vibrational progression of the CO stretching mode. The A, state is the lowest electronic state of,OXA, and the electron affinity (EA) of OXA is 1.940 +/- 0.010 eV. The B-3(2) state is the first excited state with an electronic term energy of 55 +/- 2 meV. The widths of the vibronic peaks of the (X) over tilde (1)A(1) state are much broader than those of the (a) over tilde B-3(2) state, implying that the (1)A(1) state is indeed a transition state. The CASSCF and CASPT2 calculations suggest that the (1)A(1) state is at a potential maximum along the nuclear coordinate representing disrotatory motion of the two methylene groups, which leads to three-membered-ring formation, i.e., cydopropanone. The simulation of (b) over tilde B-3(1) OXA reproduces the higher eBE portion of the spectrum very well. The term energy of the B-3(1) state is 0.883 +/- 0.012 eV. Photoelectron spectroscopic measurements have also been conducted for the other ion products of the O center dot- reaction with acetone. The photoelectron imaging spectrum of the acetylcarbene (AC) radical anion exhibits a broad, structureless feature, which is assigned to the (X) over tilde (3)A '' state of AC. The ground ((2)A '') and first excited ((2)A') states of the 1-methylvinoxy (1-MVO) radical have been observed in the photoelectron spectrum of the 1-MVO ion, and their vibronic structure has been analyzed.
Resumo:
There has been a recent rapid expansion of the range of applications of low-temperature plasma processing in Si-based photovoltaic (PV) technologies. The desire to produce Si-based PV materials at an acceptable cost with consistent performance and reproducibility has stimulated a large number of major research and research infrastructure programs, and a rapidly increasing number of publications in the field of low-temperature plasma processing for Si photovoltaics. In this article, we introduce the low-temperature plasma sources for Si photovoltaic applications and discuss the effects of low-temperature plasma dissociation and deposition on the synthesis of Si-based thin films. We also examine the relevant growth mechanisms and plasma diagnostics, Si thin-film solar cells, Si heterojunction solar cells and silicon nitride materials for antireflection and surface passivation. Special attention is paid to the low-temperature plasma interactions with Si materials including hydrogen interaction, wafer cleaning, masked or mask-free surface texturization, the direct formation of p-n junction, and removal of phosphorus silicate glass or parasitic emitters. The chemical and physical interactions in such plasmas with Si surfaces are analyzed. Several examples of the plasma processes and techniques are selected to represent a variety of applications aimed at the improvement of Si-based solar cell performance. © 2014 Elsevier B.V.
Resumo:
Nitrogenated carbon nanotips (NCNTPs) are synthesized by plasma-enhanced hot filament chemical vapor deposition from the hydrogen, methane, and nitrogen gas mixtures with different flow rate ratios of hydrogen to nitrogen. The morphological, structural, compositional, and electron field emission (EFE) properties of the NCNTPs were investigated by field emissionscanning electron microscopy, Raman spectroscopy, x ray photoelectron spectroscopy, and EFE high-vacuum system. It is shown that the NCNTPs deposited at an intermediate flow rate ratio of hydrogen to nitrogen feature the best size/shape and pattern uniformity, the highest nanotip density, the highest nitrogen concentration, as well as the best electron field emission performance. Several factors that come into play along with the nitrogen incorporation, such as the combined effect of the plasma sputtering and etching, the transition of sp 3carbon clusters to sp 2carbon clusters, the increase of the size of the sp 2 clusters, as well as the reduction of the work function, have been examined to interpret these experimental findings. Our results are highly relevant to the development of the next generation electron field emitters, flat panel displays, atomic force microscope probes, and several other advanced applications.
Resumo:
The effect of a SiO2 nanolayer and annealing temperature on the UV/visible room-temperature photoluminescence (PL) from SiNx films synthesized by rf magnetron sputtering is studied. The PL intensity can be maximized when the SiO2 layer is 510 nm thick at 800 °C annealing temperature and only 2 nm at 1000 °C. A compositionstructureproperty analysis reveals that the PL intensity is directly related to both the surface chemical states and the content of the SiO and SiN bonds in the SiNx films. These results are relevant for the development of advanced optoelectronic and photonic emitters and sensors. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Self-assembly of carbon nanotip (CNTP) structures on Ni-based catalyst in chemically active inductively coupled plasmas of CH 4 + H 2 + Ar gas mixtures is reported. By varying the process conditions, it appears possible to control the shape, size, and density of CNTPs, content of the nanocrystalline phase in the films, as well as to achieve excellent crystallinity, graphitization, uniformity and vertical alignment of the resulting nanostructures at substrate temperatures 300-500°C and low gas pressures (below 13.2 Pa). This study provides a simple and efficient plasma-enhanced chemical vapor deposition (PECVD) technique for the fabrication of vertically aligned CNTP arrays for electron field emitters.
Resumo:
We report fabrication and optical properties of electrochemically deposited silver nanowires into nanoporous alumina template. A finite element method is used to study plasmonic coupling of dipole emitters with the silver nanowires.
Resumo:
Exhaust emissions from motor vehicles vary widely and depend on factors such as engine operating conditions, fuel, age, mileage and service history. A method has been devised to rapidly identify high-polluting vehicles as they travel on the road. The method is able to monitor emissions from a large number of vehicles in a short time and avoids the need to conduct expensive and time consuming tests on chassis dynamometers. A sample of the exhaust plume is captured as each vehicle passes a roadside monitoring station and the pollutant emission factors are calculated from the measured concentrations using carbon dioxide as a tracer. Although, similar methods have been used to monitor soot and gaseous mass emissions, to-date it has not been used to monitor particle number emissions from a large fleet of vehicles. This is particularly important as epidemiological studies have shown that particle number concentration is an important parameter in determining adverse health effects. The method was applied to measurements of particle number emissions from individual buses in the Brisbane City Council diesel fleet operating on the South-East Busway. Results indicate that the particle number emission factors are gamma- distributed, with a high proportion of the emissions being emitted by a small percentage of the buses. Although most of the high-emitters are the oldest buses in the fleet, there are clear exceptions, with some newer buses emitting as much. We attribute this to their recent service history, particularly pertaining to improper tuning of the engines. We recommend that a targeted correction program would be a highly effective measure in mitigating urban environmental pollution.
Resumo:
Organic light emitting diodes (OLEDs), as an emerging technology for display and solid state lighting application, have many advantages including self-emission, lightweight, flexibility, low driving voltage, low power consumption, and low production cost. With the advancement of light emitting materials development and device architecture optimization, mobile phones and televisions based on OLED technology are already in the market. However, to obtain efficient, stable and pure blue emission than producing lower-energy colors is still one of the important subjects of these challenges. Full color and pure white light can be achieved only having stable blue emitting materials. To address this issue, significant effort has been devoted to develop novel blue light emitting materials in the past decade aiming at further improving device efficiency, color quality of emission light, and device lifetime. This review focuses on recent efforts of synthesis and device performance of small molecules, oligomers and polymers for blue emission of organic electroluminescent devices.
Resumo:
We investigate the photoexcited state dynamics in a donor-acceptor copolymer, poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]- pyrrole-1,4-dione-alt-naphthalene} (pDPP-TNT), by picosecond fluorescence and femtosecond transient absorption spectroscopies. Timeresolved fluorescence lifetime measurements of pDPP-TNT thin films reveal that the lifetime of the singlet excited state is 185 ± 5 ps and that singlet-singlet annihilation occurs at excitation photon densities above 6 × 1017 photons/cm3. From the results of singlet-singlet annihilation analysis, we estimate that the single-singlet annihilation rate constant is (6.0 ± 0.2) × 109cm3 s-1 and the singlet diffusion length is -7 nm. From the comparison of femtosecond transient absorption measurements and picosecond fluorescence measurements, it is found that the time profile of the photobleaching signal in the charge-transfer (CT) absorption band coincides with that of the fluorescence intensity and there is no indication of long-lived species, which clearly suggests that charged species, such as polaron pairs and triplet excitons, are not effectively photogenerated in the neat pDPP-TNT polymer.
Resumo:
A nonlinear interface element modelling method is formulated for the prediction of deformation and failure of high adhesive thin layer polymer mortared masonry exhibiting failure of units and mortar. Plastic flow vectors are explicitly integrated within the implicit finite element framework instead of relying on predictor–corrector like approaches. The method is calibrated using experimental data from uniaxial compression, shear triplet and flexural beam tests. The model is validated using a thin layer mortared masonry shear wall, whose experimental datasets are reported in the literature and is used to examine the behaviour of thin layer mortared masonry under biaxial loading.
Resumo:
A series of Pt(II) diimine complexes bearing benzothiazolylfluorenyl (BTZ-F8), diphenylaminofluorenyl (NPh2- F8), or naphthalimidylfluorenyl (NI-F8) motifs on the bipyridyl or acetylide ligands (Pt-4−Pt-8), (i.e., {4,4′-bis[7-R1-F8-(≡)n-]bpy}Pt(7- R2-F8- ≡ -)2, where F8 = 9,9′-di(2-ethylhexyl)fluorene, bpy = 2,2′- bipyridine, Pt-4: R1 = R2 = BTZ, n = 0; Pt-5: R1 = BTZ, R2 = NI, n = 0; Pt-6: R1 = R2 = BTZ, n = 1; Pt-7: R1 = BTZ, R2 = NPh2, n = 1; Pt- 8: R1 = NPh2, R2 = BTZ, n = 1) were synthesized. Their ground-state and excited-state properties and reverse saturable absorption performances were systematically investigated. The influence of these motifs on the photophysics of the complexes was investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). The intense absorption bands below 410 nm for these complexes is assigned to predominantly 1π,π* transitions localized on either the bipyridine or the acetylide ligands; while the broad low-energy absorption bands between 420 and 575 nm are attributed to essentially 1MLCT (metal-to-ligand charge transfer)/ 1LLCT (ligand-to-ligand charge transfer) transitions, likely mixed with some 1ILCT (intraligand charge transfer) transition for Pt-4−Pt-7, and predominantly 1ILCT transition admixing with minor 1MLCT/1LLCT characters for Pt-8. The different substituents on the acetylide and bipyridyl ligands, and the degrees of π-conjugation in the bipyridyl ligand influence both the 1π,π* and charge transfer transitions pronouncedly. All complexes are emissive at room temperature. Upon excitation at their respective absorption band maxima, Pt-4, Pt-6, and Pt-8 exhibit acetylide ligand localized 1π,π* fluorescence and 3MLCT/3LLCT phosphorescence in CH2Cl2, while Pt-5 manifests 1ILCT fluorescence and 3ILCT phosphorescence. However, only 1LLCT fluorescence was observed for Pt-7 at room temperature. The nanosecond transient absorption study was carried out for Pt-4−Pt-8 in CH3CN. Except for Pt-7 that contains NPh2 at the acetylide ligands, Pt-4−Pt-6 and Pt-8 all exhibit weak to moderate excited-state absorption in the visible spectral region. Reverse saturable absorption (RSA) of these complexes was demonstrated at 532 nm using 4.1 ns laser pulses in a 2 mm cuvette. The strength of RSA follows this trend: Pt-4 > Pt-5 > Pt-7 > Pt-6 > Pt-8. Incorporation of electron-donating substituent NPh2 on the bipyridyl ligand significantly decreases the RSA, while shorter π-conjugation in the bipyridyl ligand increases the RSA. Therefore, the substituent at either the acetylide ligands or the bipyridyl ligand could affect the singlet and triplet excited-state characteristics significantly, which strongly influences the RSA efficiency.
Resumo:
A new database called the World Resource Table is constructed in this study. Missing values are known to produce complications when constructing global databases. This study provides a solution for applying multiple imputation techniques and estimates the global environmental Kuznets curve (EKC) for CO2, SO2, PM10, and BOD. Policy implications for each type of emission are derived based on the results of the EKC using WRI. Finally, we predicted the future emissions trend and regional share of CO2 emissions. We found that East Asia and South Asia will be increasing their emissions share while other major CO2 emitters will still produce large shares of the total global emissions.