996 resultados para TRADE EXPANSION
Resumo:
The role of shoot water status in mediating the decline in leaf elongation rate of nitrogen (N)-deprived barley plants was assessed. Plants were grown at two levels of N supply, with or without the application of pneumatic pressure to the roots. Applying enough pressure (balancing pressure) to keep xylem sap continuously bleeding from the cut surface of a leaf allowed the plants to remain at full turgor throughout the experiments. Plants from which N was withheld required a greater balancing pressure during both day and night. This difference in balancing pressure was greater at high (2.0 kPa) than low (1.2 kPa) atmospheric vapour pressure deficit (VPD). Pressurizing the roots did not prevent the decline in leaf elongation rate induced by withholding N at either high or low VPD. Thus low shoot water status did not limit leaf growth of N-deprived plants.
Resumo:
Tetrazolo[1,5-a]pyrazine/2-azidopyrazine 9T/9A undergo photolysis in Ar matrix at cryogenic temperatures to yield 1,3,5-triazacyclohepta-1,2,4,6-tetraene 21 as the first observable intermediate, and 1-cyanoimidazole 11 and (2-isocyanovinyl)carbodiimide 22 as the final products. The latter tautomerizes to 2-(isocyanovinyl)cyanamide 23 on warming to 40 K. The same intermediate 21 and the same final products are obtained on matrix photolysis of the isomeric tetrazolo[1,5-c]pyrimidine/4-azidopyrimidine 24T/24A. These photolysis results as well as those of the previously reported thermal ring contraction of N-15-labeled 2-pyrazinyl- and 4-pyrimidylnitrenes to 1-cyanoimidazoles can all be rationalized in terms of selective ring opening of 21 or nitrine 10 to a nitrile ylide zwitterion 28 prior to formation of the final products, 11 and 22. The results are supported by high-level ab initio and DFT calculations (CASPT2-CASSCF(6,6), G3(MP2), and B3LYP/6-31+G*) of the energies and IR spectra of the intermediates and products.
Resumo:
[GRAPHICS] A new general method for the construction of medium ring ethers has been developed. This involves the ring expansion of halo-O,S-acetals followed by a Ramburg-Backlund ring contraction reaction with concomitant extrusion of the sulfur atom. This methodology has been utilized for the synthesis of cis- and trans-lauthisan.
Resumo:
The trade spectrum of a graph G is essentially the set of all integers t for which there is a graph H whose edges can be partitioned into t copies of G in two entirely different ways. In this paper we determine the trade spectrum of complete partite graphs, in all but a few cases.
Resumo:
The UN Cartagena Protocol on Biosafety adopted in Montreal, 29 January, 2000 and opened for signature in Nairobi, 15-26 May, 2000 will exert a profound effect on international trade in genetically modified organisms (GMOs) and their products. In this paper, the potential effects of various articles of the Protocol on international trade in GMOs are analyzed. Based on the present status of imports of GMOs and domestic research and development of biotechnology in China, likely trends in imports of foreign GM food and related products after China accedes to WTO is explored. Also, China's potential countermeasures to control and regulate imports of GMOs in line with implementation of the Protocol are discussed. China, in recent times, has increased its food and agricultural imports substantially from USA and Canada. China imported soybean 10.42 mill. tons in 2000 and about 15 mill tons in 2001, of which majority are from USA where GM soybean accounts for 60%. The plantation of US Monsanto's transgenic Bt cotton was increased to more than 1 million ha in China in 2001. Though China has paid great attention to develop biotechnology, it appears to have little scope to export GMOs and GM products. So China may consider a range of administrative measures to implement the Cartagena Protocol and to regulate its import of GMOs and GM agricultural products. Consequently, the Regulation on Safety of Agri-GMOs was issued on June, 2001 and followed three detailed rules issued in Jan. of 2002, with a priority to limit foreign GMOs importing by safety certification and labeling system. These were outlined taking into account policies adopted in Western countries such as green barriers to international trade.
Resumo:
Passerine birds living on islands are usually larger than their mainland counterparts, in terms of both body size and bill size. One explanation for this island rule is that shifts in morphology are an adaptation to facilitate ecological niche expansion. In insular passerines, for instance, increased bill size may facilitate generalist foraging because it allows access to a broader range of feeding niches. Here we use morphologically and ecologically divergent races of white-eyes (Zosteropidae) to test three predictions of this explanation: (1) island populations show a wider feeding niche than mainland populations; (2) island-dwelling populations are made up of individual generalists; and (3) within insular populations there is a positive association between size and degree of foraging generalism. Our results provide only partial support for the traditional explanation. In agreement with the core prediction, island populations of white-eye do consistently display a wider feeding niche than comparative mainland populations. However, observations of individually marked birds reveal that island-dwelling individuals are actually more specialized than expected by chance. Additionally, neither large body size nor large bill size are associated with generalist foraging behavior per se. These latter results remained consistent whether we base our tests on natural foraging behavior or on observations at an experimental tree, and whether we use data from single or multiple cohorts. Taken together, our results suggest that generalist foraging and niche expansion are not the full explanation for morphological shifts in island-dwelling white-eyes. Hence, we review briefly five alternative explanations for morphological divergence in insular populations: environmental determination of morphology, reduced predation pressure, physiological optimization, limited dispersal, and intraspecific dominance.
Resumo:
Free-space optical interconnects (FSOIs), made up of dense arrays of vertical-cavity surface-emitting lasers, photodetectors and microlenses can be used for implementing high-speed and high-density communication links, and hence replace the inferior electrical interconnects. A major concern in the design of FSOIs is minimization of the optical channel cross talk arising from laser beam diffraction. In this article we introduce modifications to the mode expansion method of Tanaka et al. [IEEE Trans. Microwave Theory Tech. MTT-20, 749 (1972)] to make it an efficient tool for modelling and design of FSOIs in the presence of diffraction. We demonstrate that our modified mode expansion method has accuracy similar to the exact solution of the Huygens-Kirchhoff diffraction integral in cases of both weak and strong beam clipping, and that it is much more accurate than the existing approximations. The strength of the method is twofold: first, it is applicable in the region of pronounced diffraction (strong beam clipping) where all other approximations fail and, second, unlike the exact-solution method, it can be efficiently used for modelling diffraction on multiple apertures. These features make the mode expansion method useful for design and optimization of free-space architectures containing multiple optical elements inclusive of optical interconnects and optical clock distribution systems. (C) 2003 Optical Society of America.
Resumo:
Argon matrix photolysis of tetrazolo[1,5-a]quinoline 8 and tetrazolo[5,1-a]isoquinoline 7 causes nitrogen elimination and ring expansion to 1,3-diazabenzo[d]cyclohepta-1,2,4,6-tetraene 13. The photolysis of tetrazolo[5,1-a]isoquinoline 7 also causes ring opening to o-cyanophenylketenimine 22. Mechanisms of ring opening of heteroarylnitrenes are discussed.
Resumo:
Uptake of nutrients and water depends on the growth of roots through elongation of individual cells near the. root tip. Many of the numerous components of Type I primary cell walls, those of dicotyledons and monocotyledons other than grasses (Poaceae), have been determined, and many hypotheses have been proposed for the control of cell expansion. This important aspect of plant growth still needs elucidation, however. A model is proposed in which pectin, which occurs as a calcium (Ca) pectate gel between the load-bearing cellulose microfibrils and xyloglucan (XG) chains, controls the rate at which cells expand. It is considered that the increasing tension generated by the expanding cell is transmitted to interlocked XG chains and cellulose microfibrils. The resulting deformation of the embedded Ca pectate gel elicits the excretion of protons from the cytoplasm, possibly via compounds such as cell wall-associated kinases, that weakens the Ca pectate gel, permitting slippage of XG molecules through the action of expansin. Further slippage is prevented by deformation of the pectic gel, proton diffusion, and the transfer of residual tension to adjacent XG chains. Evidence for this model is based on the effects of pH, Ca, and aluminum (Al) on root elongation and on the reactions of these cations with Ca pectate. This model allows for genetic selection of plants and adaptation of individual plants to root environmental conditions.