951 resultados para TRACE AMOUNTS
Resumo:
The Bura do Itapira pua carbonatite is located in southern Brazil and belongs to the Cretaceous Ponta Grossa alkaline-carbonatitic province related to the opening of the South Atlantic. The carbonatite complex is emplaced in Proterozoic granites and is mainly composed of plutonic magnesio- to ferrocarbonatite, with smaller amounts of subvolcanic magnesiocarbonatite. Hydrothermal alteration of the carbonatite has led to the formation of quartz, apatite, fluorite, rue earth fluorocarbonates, barite and sulfides in variable proportions. Trace element data, delta(13)C and delta(18)O are presented here, with the aim of better understanding the geochemical nature of hydrothermal alteration related to rare earth elements (REE) mineralization. The non-overprinted plutonic carbonatite shows the lowest REE contents, and its primitive carbon and oxygen stable isotopic composition places it in the field of primary igneous carbonatites. Two types of hydrothermally overprinted plutonic carbonatites can be distinguished based on secondary minerals and geochemical composition. Type I contains mainly quartz, rare earth fluorocarbonates and apatite as hydrothermal secondary minerals, and has steep chondrite normalized REE patterns, with Sigma(REE+Y) of up to 3 wt.% (i.e., two orders of magnitude higher than in fresh plutonic samples). In contrast, the Type II overprint contains apatite, fluorite and barite as dominant hydrothermal minerals, and is characterized by heavy REE enrichment relative to the fresh samples, with flat chondrite normalized REE patterns. Carbon and oxygen stable isotope ratios of Types I and II are elevated (delta(18)O + 8 to + 12 parts per thousand; delta(13)C - 6 to - 2 parts per thousand) relative to the fresh samples. Hydrothermally overprinted carbonatites exposed to weathering show even higher delta(18)O values (delta(18)O 13 to 25 parts per thousand) but no additional REE enrichment. The subvolcanic carbonatite has anomalously high delta(13)C of up to + 1 parts per thousand, which suggests crustal contamination through interaction with carbonate-bearing metasediments. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The aim of this study was to use proximate chemical composition, macro and trace elements, fatty acid profile and stable isotopes as traceability tools to assess geographic origin and seasonality of croaker (Micropogonicts fumieri). Croaker from Parnaiba contained higher ash in July and lower fat content than croaker from Santos. In contrast, croaker from Santos had statistically higher proportion of 16:1n-9+16:1n-7, 20:1n-11, 20:1n-9, MUFA and n-3/n-6 ratio than croaker from Parnaiba. Concerning seasonality, croaker caught in July had significantly higher amounts of 14:0, 15:0, 16:1n-9+16:1n-7 and saturated fatty acids than fish caught in December. Concerning elements, significant differences were also detected between seasons for Cl, Ca, Fe, Sr and S, whereas differences between geographic origins were only observed with K. delta C-13 and delta N-15 were statistically different between geographic origins, whereas differences between seasons were only detected in delta N-15 ratio of croaker from Santos. Fatty acids, minerals and stable isotope are effective methods to trace geographic origin and seasonality of croaker. Nonetheless, further investigation is still required with larger samples of croaker to enable the implementation of fatty acids, elements or stable isotope as authenticity tools by food control agencies. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This PhD thesis concerns geochemical constraints on recycling and partial melting of Archean continental crust. A natural example of such processes was found in the Iisalmi area of Central Finland. The rocks from this area are Middle to Late Archean in age and experienced metamorphism and partial melting between 2.7-2.63 Ga. The work is based on extensive field work. It is furthermore founded on bulk rock geochemical data as well as in-situ analyses of minerals. All geochemical data were obtained at the Institute of Geosciences, University of Mainz using X-ray fluorescence, solution ICP-MS and laser ablation-ICP-MS for bulk rock geochemical analyses. Mineral analyses were accomplished by electron microprobe and laser ablation ICP-MS. Fluid inclusions were studied by microscope on a heating-freezing-stage at the Geoscience Center, University Göttingen. Part I focuses on the development of a new analytical method for bulk rock trace element determination by laser ablation-ICP-MS using homogeneous glasses fused from rock powder on an Iridium strip heater. This method is applicable for mafic rock samples whose melts have low viscosities and homogenize quickly at temperatures of ~1200°C. Highly viscous melts of felsic samples prevent melting and homogenization at comparable temperatures. Fusion of felsic samples can be enabled by addition of MgO to the rock powder and adjustment of melting temperature and melting duration to the rock composition. Advantages of the fusion method are low detection limits compared to XRF analyses and avoidance of wet-chemical processing and use of strong acids as in solution ICP-MS as well as smaller sample volumes compared to the other methods. Part II of the thesis uses bulk rock geochemical data and results from fluid inclusion studies for discrimination of melting processes observed in different rock types. Fluid inclusion studies demonstrate a major change in fluid composition from CO2-dominated fluids in granulites to aqueous fluids in TTG gneisses and amphibolites. Partial melts were generated in the dry, CO2-rich environment by dehydration melting reactions of amphibole which in addition to tonalitic melts produced the anhydrous mineral assemblages of granulites (grt + cpx + pl ± amph or opx + cpx + pl + amph). Trace element modeling showed that mafic granulites are residues of 10-30 % melt extraction from amphibolitic precursor rocks. The maximum degree of melting in intermediate granulites was ~10 % as inferred from modal abundances of amphibole, clinopyroxene and orthopyroxene. Carbonic inclusions are absent in upper-amphibolite facies migmatites whereas aqueous inclusion with up to 20 wt% NaCl are abundant. This suggests that melting within TTG gneisses and amphibolites took place in the presence of an aqueous fluid phase that enabled melting at the wet solidus at temperatures of 700-750°C. The strong disruption of pre-metamorphic structures in some outcrops suggests that the maximum amount of melt in TTG gneisses was ~25 vol%. The presence of leucosomes in all rock types is taken as the principle evidence for melt formation. However, mineralogical appearance as well as major and trace element composition of many leucosomes imply that leucosomes seldom represent frozen in-situ melts. They are better considered as remnants of the melt channel network, e.g. ways on which melts escaped from the system. Part III of the thesis describes how analyses of minerals from a specific rock type (granulite) can be used to determine partition coefficients between different minerals and between minerals and melt suitable for lower crustal conditions. The trace element analyses by laser ablation-ICP-MS show coherent distribution among the principal mineral phases independent of rock composition. REE contents in amphibole are about 3 times higher than REE contents in clinopyroxene from the same sample. This consistency has to be taken into consideration in models of lower crustal melting where amphibole is replaced by clinopyroxene in the course of melting. A lack of equilibrium is observed between matrix clinopyroxene / amphibole and garnet porphyroblasts which suggests a late stage growth of garnet and slow diffusion and equilibration of the REE during metamorphism. The data provide a first set of distribution coefficients of the transition metals (Sc, V, Cr, Ni) in the lower crust. In addition, analyses of ilmenite and apatite demonstrate the strong influence of accessory phases on trace element distribution. Apatite contains high amounts of REE and Sr while ilmenite incorporates about 20-30 times higher amounts of Nb and Ta than amphibole. Furthermore, trace element mineral analyses provide evidence for magmatic processes such as melt depletion, melt segregation, accumulation and fractionation as well as metasomatism having operated in this high-grade anatectic area.
Resumo:
Numerous large igneous provinces formed in the Pacific Ocean during Early Cretaceous time, but their origins and relations are poorly understood. We present new geochronological and geochemical data on rocks from the Manihiki Plateau and compare these results to those for other Cretaceous Pacific plateaus. A dredged Manihiki basalt gives an 40Ar-39Ar age of 117.9+/-3.5 Ma (2 sigma), essentially contemporaneous with the Ontong Java Plateau ~2500 km to the west, and the possibly related Hikurangi Plateau ~3000 km to the south. Drilled Manihiki lavas are tholeiitic with incompatible trace element abundances similar to those of Ontong Java basalts. These lavas may result from high degrees of partial melting during the main eruptive phase of plateau formation. There are two categories of dredged lavas from the Danger Islands Troughs, which bisect the plateau. The first is alkalic lavas having strong enrichments in light rare earth and large-ion lithophile elements; these lavas may represent late-stage activity, as one sample yields an 40Ar-39Ar age of 99.5+/-0.7 Ma. The second category consists of tholeiitic basalts with U-shaped incompatible element patterns and unusually low abundances of several elements; these basalts record a mantle component not previously observed in Manihiki, Ontong Java, or Hikurangi lavas. Their trace element characteristics may result from extensive melting of depleted mantle wedge material mixed with small amounts of volcaniclastic sediment. We are unaware of comparable basalts elsewhere.
Resumo:
We have studied the sedimentary and basaltic inputs of lithium to subduction zones. Various sediments from DSDP and ODP drill cores in front of the Mariana, South Sandwich, Banda, East Sunda and Lesser Antilles island arcs have been analysed and show highly variable Li contents and d7Li values. The sediment piles in front of the Mariana and South Sandwich arcs largely consist of pelagic sediments (clays and oozes). The pelagic clays have high Li contents (up to 57.3 ppm) and Li isotope compositions ranging from +1.3? to +4.1?. The oozes have lower Li contents (7.3-16 ppm) with d7Li values of the diatom oozes from the South Sandwich lower (+2.8? to +3.2?) than those of the radiolarian oozes from the Mariana arc (+8.1? to +14.5?). Mariana sediment also contains a significant portion of volcanogenic material, which is characterised by a moderate Li content (14 ppm) and a relatively heavy isotope composition (+6.4?). Sediments from the Banda and Lesser Antilles contain considerable amounts of continental detritus, and have high Li contents (up to 74.3 ppm) and low d7Li values (around 0?), caused by weathering of continental bedrock. East Sunda sediments largely consist of calcareous oozes. These carbonate sediments display intermediate to high Li contents (2.4-41.9 ppm) and highly variable d7Li values (-1.6? to +12.8?). Basaltic oceanic crust samples from worldwide DSDP and ODP drill cores are characterised by enrichment of Li compared to fresh MORB (6.6-33.1 vs. 3.6-7.5 ppm, respectively), and show a large range in Li isotope compositions (+1.7? to +11.8?). The elemental and isotopic enrichment of Li in altered basalts is due to the uptake of isotopically heavy seawater Li during weathering. However, old oceanic crust samples from Sites 417/418 exhibit lighter Li isotope compositions compared to young basaltic crust samples from Sites 332B and 504B. This lighter Li isotope signature in old crust is unexpected and further research is needed to explore this issue.
Resumo:
The Cretaceous and Paleogene sediments recovered during Ocean Drilling Program Leg 207 can be divided into three broad modes of deposition: synrift clastics (lithologic Unit V), organic matter-rich, laminated black shales (Unit IV), and open-marine chalk and calcareous claystones (Units III-I). The aim of this study is to provide a quantitative geochemical characterization of sediments representing these five lithologic units. For this work we used the residues (squeeze cakes) obtained from pore water sampling. Samples were analyzed for bulk parameters (total inorganic carbon, total organic carbon, and S) and by X-ray fluorescence for major (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, and P) and selected minor (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, U, V, Y, Zn, and Zr) elements. Inductively coupled plasma-mass spectrometry analyses for rare earth elements (REEs) were performed on acid digestions of the squeeze cake samples from Site 1258. The major element composition is governed by the mixture of a terrigenous detrital component of roughly average shale (AS) composition with biogenous carbonate and silica. The composition of the terrigenous detritus is close to AS in Units II-IV. For Unit I, a more weathered terrigenous source is suggested. Carbonate contents reach >60 wt% on average in chalks and calcareous claystones of Units II-IV. The SiO2 contribution in excess of the normal terrigenous-detrital background indicates the presence of biogenous silica, with highest amounts in Units II and III. The contents of coarse-grained material (quartz) are enhanced in Unit V, where Ti and Zr contents are also high. This indicates a high-energy depositional environment. REE patterns are generally similar to AS. A more pronounced negative Ce anomaly in Unit IV may indicate low-oxygen conditions in the water column. The Cretaceous black shales of Unit IV are clearly enriched in redox-sensitive and stable sulfide-forming elements (Mo, V, Zn, and As). High phosphate contents point toward enhanced nutrient supply and high bioproductivity. Ba/Al ratios are rather high throughout Unit IV despite the absence of sulfate in the pore water, indicating elevated primary production. Manganese contents are extremely low for most of the interval studied. Such an Mn depletion is only possible in an environment where Mn was mobilized and transported into an expanded oxygen minimum zone ("open system"). The sulfur contents show a complete sulfidation of the reactive iron of Unit IV and a significant excess of sulfur relative to that of iron, which indicates that part of the sulfur was incorporated into organic matter. We suppose extreme paleoenvironmental conditions during black shale deposition: high bioproductivity like in recent coastal upwelling settings together with severe oxygen depletion if not presence of hydrogen sulfide in the water column.
Resumo:
The distribution of paragenetic assemblages of trace and rare elements, as revealed by factor analysis (R-mode, Q-mode), the ratios of elements to Zr and the interpretation of these data in the context of the known mineralogy, lithology, and geology of the region, provide the bases for the outline of the geochemical history of sedimentation in the study area that forms the subject of this chapter. Two stages may be discerned. 1. Late-Middle Jurassic-Early Cretaceous (160-106? Ma). The sediments that accumulated in relatively shallow water (shelf) were predominantly clay, with dispersed sapropelic organic matter, plant fragments, pyrite, admixtures of acid-medium volcanic glass, and epigenetic crystals of gypsum. The bottom water layers of the basin are notably stagnant. The sediments are characterized by higher amounts of V, Zn, Cu, Cr, Rb, and Be associated with organic matter. Lower Cretaceous sediments, separated from those of the Upper Jurassic by a hiatus, accumulated in a deepened and enlarging basin. These Lower Cretaceous deposits are chemically similar to those of the Upper Jurassic, but contain diagenetic concentrations of Zn, Ni, and La. 2. Early-middle Albian (Unit 5)-middle Maestrichtian (1067-66.6Ma). The prevailing regime was that of an open ocean basin that tended to expand and deepen. During the second half of the early-middle Albian, the biogenic components Ba, Sr, and CaCO3 accumulated. By the end of this interval, Ti/Zr values had increased. In conjunction data on mineral composition, they testify to an outburst of basaltoid volcanism related to tectonic activity before an erosional hiatus (late Albian-Cenomanian). At the end of the Cenomanian-Turonian, residual deposits of predominantly clay sediments with relatively high amounts of Ti and Zr and associated rare alkalis (Li, Rb) accumulated. Clay sediments deposited during the Coniacian-Santonian were characterized by higher concentrations of Ti, Zr, Li, and Rb, by diagenetic carbonate phases of Ni, Zn, and La, and by sulphides and Fe-oxides with an admixture of Ni and Co. The latter half of the interval saw the deposition of fine basaltoid volcanoclastic material, diagenetically altered by zeolitization and carbonatization and enriched with Se, Pb, Ti, Sr, Ba, Y, and Yb. Sediments with a similar chemistry accumulated in the Campanian-middle Maestrichtian. Strong current activity preceding a global hiatus at the Mesozoic/Cenozoic boundary is reflected in both lower sedimentation rates and the presence of higher residual concentrations of Ti, Zr, Ba, Sr, and other elements studied in this chapter.
Resumo:
The regulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity by 2-carboxyarabinitol 1-phosphate (CA1P) was investigated using gas-exchange analysis of antisense tobacco (Nicotiana tabacum) plants containing reduced levels of Rubisco activase. When an increase in light flux from darkness to 1200 μmol quanta m−2 s−1 was followed, the slow increase in CO2 assimilation by antisense leaves contained two phases: one represented the activation of the noncarbamylated form of Rubisco, which was described previously, and the other represented the activation of the CA1P-inhibited form of Rubisco. We present evidence supporting this conclusion, including the observation that this second phase, like CA1P, is only present following darkness or very low light flux. In addition, the second phase of CO2 assimilation was correlated with leaf CA1P content. When this novel phase was resolved from the CO2 assimilation trace, most of it was found to have kinetics similar to the activation of the noncarbamylated form of Rubisco. Additionally, kinetics of the novel phase indicated that the activation of the CA1P-inhibited form of Rubisco proceeds faster than the degradation of CA1P by CA1P phosphatase. These results may be significant with respect to current models of the regulation of Rubisco activity by Rubisco activase.
Resumo:
To evaluate the extent of human impact on a pristine Antarctic environment, natural baseline levels of trace metals have been established in the basement rocks of the Larsemann Hills, East Antarctica. From a mineralogical and geochemical point of view the Larsemann Hills basement is relatively homogeneous, and contains high levels of Pb, Th and U. These may become soluble during the relatively mild Antarctic summer and be transported to lake waters by surface and subsurface melt water. Melt waters may also be locally enriched in V, Cr, Co, Ni, Zn and Sri derived from weathering of metabasite pods. With a few notable exceptions, the trace metal concentrations measured in the Larsemann Hills lake waters can be entirely accounted for by natural processes such as sea spray and surface melt water input. Thus, the amount of trace metals released by weathering of basement lithologies and dispersed into the Larsemann Hills environment, and presumably in similar Antarctic environments, is, in general, not negligible, and may locally be substantial. The Larsemann Hills sediments are coarse-grained and contain minute amounts of clay-size particles, although human activities have contributed to the generation of fine-grained material at the most impacted sites. Irrespective of their origin, these small amounts of fine-grained clastic sediments have a relatively small surface area and charge, and are not as effective metal sinks as the abundant, thick cyanobacterial algal mats that cover the lake floors. Thus, the concentration of trace metals in the Larsemann Hills lake waters is regulated by biological activity and thawing-freezing cycles, rather than by the type and amount of clastic sediment supply. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The main question, posed in the work scheme before laboratory analysis was started, was expressed as follows: Do marked seasonal fluctuations occur in trace element content of the sediment surface, and what are the probable influences of factors such as changing hydrographical parameters, plankton sequence etc. ? Special attention was paid to elements known as pollutants, for example mercury. Within this framework samples have been analysed for their contents of manganese, iron, zinc, lead, and mercury. The amounts of silica and organically-bound carbon serve in most cases as reference values for the trace element content. On sand temporary conditions of increased C org content raise the concentrations of all determined elements. Especially the values reached for mercury in July are worth nothing. It is concluded that Zn, Pb, and Hg tend to enrich with respect to C org as the decomposition of organic matter progresses. On mud-sand flocculation and precipitation of Mn/Fe-hydroxides probably represent an additional concentrating factor for the other elements as the relationship of the results for zinc and manganese shows. Manganese may indicate a seasonally related concentrating cycle at the sediment surface.
Resumo:
We present geochemical data of black smoker particulates filtered from hydrothermal fluids with seawater-dilutions ranging from 0-99%. Results indicate the dominance of sulphide minerals (Fe, Cu, and Zn sulphides) in all samples taken at different hydrothermal sites on the Mid-Atlantic Ridge. Pronounced differences in the geochemistry of the particles between Logatchev I and 5°S hydrothermal fields could be attributed to differences in fluid chemistry. Lower metal/sulphur ratios (Me/H2S < 1) compared to Logatchev I result in a larger amount of particles precipitated per liter fluid and the occurrence of elemental sulphur at 5°S, while at Logatchev I Fe oxides occur in larger amounts. Systematic trends with dilution degree of the fluid include the precipitation of large amounts of Cu sulphides at a low dilution and a pronounced drop with increasing dilution. Moreover, Fe (sulphides or oxides) precipitation increases with dilution of the vent fluid by seawater. Geochemical reaction path modeling of hydrothermal fluid-seawater mixing and conductive cooling indicates that Cu sulphide formation at Logatchev I and 5°S mainly occurs at high temperatures and low dilution of the hydrothermal fluid by seawater. Iron precipitation is enhanced at higher fluid dilution, and the different amounts of minerals forming at 5°S and Logatchev I are thermodynamically controlled. Larger total amounts of minerals and larger amounts of sulphide precipitate during the mixing path when compared to the cooling path. Differences between model and field observations do occur and are attributable to closed system modeling, to kinetic influences and possibly to organic constituents of the hydrothermal fluids not accounted for by the model.
Resumo:
Trace concerns writing-walking and walking-writing. The multiple voices of both novel and exegesis assemble a rhizomic map of a walk and create a never-entirely-certain wandering look upon a woman walking, rather than a single cocksure gaze. Trace explores the aesthetics of Western walking literature and the various nostalgias inherent in that tradition. Trace wonders how lost a character can become on a walk and whether a walk is itself a kind of becoming. In the undefined liminal space where the urban bleeds into the rural, Trace challenges the singular perspective of the dominating gaze with a wandering look, which aims to make an original contribution to both the walk in literature and to exegetical form.