962 resultados para TNF-Related Apoptosis-Inducing Ligand


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiazolides are a novel class of broad-spectrum anti-infective drugs with promising in vitro and in vivo activities against intracellular and extracellular protozoan parasites. The nitrothiazole-analogue nitazoxanide (NTZ; 2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide) represents the thiazolide parent compound, and a number of bromo- and carboxy-derivatives with differing activities have been synthesized. Here we report that NTZ and the bromo-thiazolide RM4819, but not the carboxy-thiazolide RM4825, inhibited proliferation of the colon cancer cell line Caco2 and nontransformed human foreskin fibroblasts (HFF) at or below concentrations the compounds normally exhibit anti-parasitic activity. Thiazolides induced typical signs of apoptosis, such as nuclear condensation, DNA fragmentation and phosphatidylserine exposure. Interestingly, the apoptosis-inducing effect of thiazolides appeared to be cell cycle-dependent and induction of cell cycle arrest substantially inhibited the cell death-inducing activity of these compounds. Using affinity chromatography and mass spectrometry glutathione-S-transferase P1 (GSTP1) from the GST class Pi was identified as a major thiazolide-binding protein. GSTP1 expression was more than 10 times higher in the thiazolide-sensitive Caco2 cells than in the less sensitive HFF cells. The enzymatic activity of recombinant GSTP1 was strongly inhibited by thiazolides. Silencing of GSTP1 using siRNA rendered cells insensitive to RM4819, while overexpression of GSTP1 increased sensitivity to RM4819-induced cell death. Thiazolides may thus represent an interesting novel class of future cancer therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor suppressor genes, such as p53, RB, the INK4-ARF family and PML, suppress malignant transformation by regulating cell cycle progression, ensuring the fidelity of DNA replication and chromosomal segregation, or by inducing apoptosis in response to potentially deleterious events. In myeloid leukemia, hematopoietic differentiation resulting from highly coordinated, stage-wise expression of myeloid transcription and soluble signaling factors is disrupted leading to a block in terminal differentiation and uncontrolled proliferation. This virtually always involves functional inactivation or genetic disruption of one or several tumor suppressor genes in order to circumvent their checkpoint control and apoptosis-inducing functions. Hence, reactivation of tumor suppressor gene function has therapeutic potential and can possibly enhance conventional cytotoxic chemotherapy. In this review, we focus on the role of different tumor suppressor genes in myeloid differentiation and leukemogenesis, and discuss implications for therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphatidylserine (PS) is not only one of the structural components of the plasma membrane, it also plays an important role in blood coagulation, and cell-cell interactions during aging and apoptosis.^ Here we studied some alterations that occur in membrane phosphatidylserine asymmetry during erythroid differentiation-associated apoptosis and erythrocyte aging and characterized some aspects in the regulation of PS asymmetry.^ Erythroleukemia cells, frequently used to study erythroid development, undergo apoptosis when induced to differentiate along the erythroid lineage. In the case of K562 cells induced to differentiate with hemin, this event is characterized by DNA fragmentation that correlates with downregulation of the survival protein BCL-xL and ultimately the result is cell death. We showed here that reorientation of PS from the inner-to-outer plasma membrane leaflet and inhibition of the aminophospholipid translocase are also events observed upon hemin treatment. We observed that constitutive expression of BCL-2 did not inhibit the alterations caused by hemin in membrane lipid asymmetry and only slightly prevented hemin-induced DNA fragmentation. On the other hand, BCL-2 effectively inhibited actinomycin D and staurosporine-induced DNA fragmentation and the appearance of PS at the outer leaflet of these cells. z.VAD.fmk, a widely used caspases inhibitor, blocked DNA fragmentation induced by both hemin and actinomycin D but only inhibited PS externalization in cells treated with actinomycin D.^ These results showed that PS externalization occurs during differentiation-related apoptosis. Unlike the pharmacologically-induced event, however, hemin-induced PS redistribution seems to be regulated by a mechanism independent of BCL-2 and caspases.^ Membrane PS is externalized not only during apoptosis but also during red blood cell senescence. To study this event, we artificially induced cellular aging by in vitro storage or vesiculation in the presence of the amphipathic lipid dilauroylphosphatidylcholine. These cells were monitored for age-dependent changes in cell density by Percoll gradient centrifugation and assessed for alterations in membrane lipid asymmetry and their ability to be cleared in vivo. These experiments demonstrated a progressive increase in red cell density upon vesiculation and in vitro aging. The clearance rate of cells obtained after vesiculation, was biphasic in nature, showing a very rapid component together with a second component consistent with the clearance rates of control populations. Quantitation of PS in the outer leaflet of red cells revealed that membrane redistribution of PS occurred upon in vitro storage and vesiculation. Inhibition of the aminophospholipid translocase with the sulfhydryl-oxidant reagent pyridyldithioethylamine resulted in higher PS externalization and enhanced clearance of vesiculated RBC.^ These observations not only suggest that vesiculation may be the mechanism responsible for some of the characteristic changes in cell density and PS asymmetry that occur upon cell aging, but also confirm the role of PS in the recognition and clearance of senescent cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Brain-derived neurotrophic factor (BDNF) blocks activation of caspase-3, reduces translocation of apoptosis-inducing factor (AIF), attenuates excitotoxicity of glutamate, and increases antioxidant enzyme activities. The mechanisms of neuroprotection suggest that BDNF may be beneficial in bacterial meningitis. METHODS To assess a potentially beneficial effect of adjuvant treatment with BDNF in bacterial meningitis, 11-day-old infant rats with experimental meningitis due to Streptococcus pneumoniae or group B streptococci (GBS) were randomly assigned to receive intracisternal injections with either BDNF (3 mg/kg) or equal volumes (10 mu L) of saline. Twenty-two hours after infection, brains were analyzed, by histomorphometrical examination, for the extent of cortical and hippocampal neuronal injury. RESULTS Compared with treatment with saline, treatment with BDNF significantly reduced the extent of 3 distinct forms of brain cell injury in this disease model: cortical necrosis in meningitis due to GBS (median, 0.0% [range, 0.0%-33.7%] vs. 21.3% [range, 0.0%-55.3%]; P<.03), caspase-3-dependent cell death in meningitis due to S. pneumoniae (median score, 0.33 [range, 0.0-1.0] vs. 1.10 [0.10-1.56]; P<.05), and caspase-3-independent hippocampal cell death in meningitis due to GBS (median score, 0 [range, 0-2] vs. 0.88 [range, 0-3.25]; P<.02). The last form of injury was associated with nuclear translocation of AIF. CONCLUSION BDNF efficiently reduces multiple forms of neuronal injury in bacterial meningitis and may hold promise as adjunctive therapy for this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 2-year-old German Holstein bull was identified as a carrier of a mutation within the X-chromosomal ED1 gene, which encodes a TNF-related signalling molecule mainly involved in ectodermal development. The clinicopathological appearance was associated with hypotrichosis, hypodontia, and a reduced number of eccrine glands, in addition to chronic rhinotracheitis and partial squamous metaplasia. Furthermore, for the first time in an ED1-deficient animal, a complete lack of respiratory mucous glands was observed. This suggests that the ED1 gene plays a role in the development of mucous glands, the absence of which resembles a feature of X-linked anhidrotic ectodermal dysplasia (ED1) in human patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA) is characterized by motoneuron loss and muscle weakness. However, the structural and functional deficits that lead to the impairment of the neuromuscular system remain poorly defined. By electron microscopy, we previously found that neuromuscular junctions (NMJs) and muscle fibres of the diaphragm are among the earliest affected structures in the severe mouse SMA model. Because of certain anatomical features, i.e. its thinness and its innervation from the cervical segments of the spinal cord, the diaphragm is particularly suitable to characterize both central and peripheral events. Here we show by immunohistochemistry that, at postnatal day 3, the cervical motoneurons of SMA mice receive less stimulatory synaptic inputs. Moreover, their mitochondria become less elongated which might represent an early stage of degeneration. The NMJs of the diaphragm of SMA mice show a loss of synaptic vesicles and active zones. Moreover, the partly innervated endplates lack S100 positive perisynaptic Schwann cells (PSCs). We also demonstrate the feasibility of comparing the proteomic composition between diaphragm regions enriched and poor in NMJs. By this approach we have identified two proteins that are significantly upregulated only in the NMJ-specific regions of SMA mice. These are apoptosis inducing factor 1 (AIFM1), a mitochondrial flavoprotein that initiates apoptosis in a caspase-independent pathway, and four and a half Lim domain protein 1 (FHL1), a regulator of skeletal muscle mass that has been implicated in several myopathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a result of defects in the coordination of cell proliferation and programmed cell death. The extent of cell death is physiologically controlled by the activation of a programmed suicide pathway that results in a morphologically recognizable form of death termed apoptosis. Inducing apoptosis in tumor cells by gene therapy provides a potentially effective means to treat human cancers. The p84N5 is a novel nuclear death domain containing protein that has been shown to bind an amino terminal domain of retinoblastoma tumor suppressor gene product (pRb). Expression of N5 can induce apoptosis that is dependent upon its intact death domain and is inhibited by pRb. In many human cancer cells the functions of pRb are either lost through gene mutation or inactivated by different mechanisms. N5 based gene therapy may induce cell death preferentially in tumor cells relative to normal cells. We have demonstrated that N5 gene therapy is less toxic to normal cells than to tumor cells. To test the possibility that N5 could be used in gene therapy of cancer, we have generated a recombinant adenovirus engineered to express N5 and test the effects of viral infection on growth and tumorigenicity of human cancer cells. Adenovirus N5 infection significantly reduced the proliferation and tumorigenicity of breast, ovarian, and osteosarcoma tumor cell lines. Reduced proliferation and tumorigenicity were mediated by an induction of apoptosis as indicated by DNA fragmentation in infected cells. We also test the potential utility of N5 for gene therapy of pancreatic carcinoma that typically respond poorly to conventional treatment. Adenoviral mediated N5 gene transfer inhibits the growth of pancreatic cancer cell lines in vitro. N5 gene transfer also reduces the growth and metastasis of human pancreatic adenocarcinoma in subcutaneous and orthotopic mouse model. Interestingly, the pancreatic adenocarcinoma cells are more sensitive to N5 than they are to p53, suggesting that N5 gene therapy may be effective in tumors resistant to p53. We also test the possibilities of the use of N5 and p53 together on the inhibition of pancreatic cancer cell growth in vitro and vivo. Simultaneous use of N5 and RbΔCDK has been found to exert a greater extent on the inhibition of pancreatic cancer cell growth in vitro and in vivo. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased dependence on aerobic glycolysis for energy (ATP) supply has been observed in various human cancer cells. It is plausible to exploit this metabolic alteration for therapeutic benefits by inhibiting glycolysis to preferentially abolish cancer energy metabolism and kill the malignant cells. 3-Bromopyruvate has been shown to be a potent inhibitor of glycolysis capable of inducing severe ATP reduction and cell death in various cancer cell lines, especially cancer cells with mitochondrial defects or under hypoxic conditions. However, the detailed mechanisms of this novel anticancer agent still remain unclear. My study demonstrated that 3-Bromopyruvate caused a covalent modification of hexokinase II, a key glycolytic enzyme, and disrupted its association with mitochondria. This led to mitochondrial permeability transition and a substantial release of apoptosis-inducing faction (AIF) prior to cytochrome c release. Dissociation of HK II from mitochondria using a cell permeable specific peptide also induced the release of AIF and cytochrome c, and caused substantial cell death. HK II-targeted peptide did not cause significant change in mitochondria respiration and glycolysis activity, suggesting that dissociation of this molecule from mitochondria alone can also cause cell death, and that this may be a novel mechanism by which 3-Bromopyruvate exerts its potent cytotoxic action, in addition to its inhibition of the enzyme activity. Another significant new discovery was that 3-Bromopyruvate induced rapid reduction of protein ubiquitination in vivo, which occurred within several hours of drug incubation and before ATP reduction and cell death. Further mechanistic studies showed that this was due to the inhibition the ubiquitin activating enzyme E1 and the conjugating enzyme E2. Knocking down ubiquitin protein expression by siRNA did not suppress mitochondria respiration and glycolysis, but caused significant cell death. Taken together, this study demonstrated that induction of HK II dissociation from mitochondria and inhibition of glycolysis are two newly discovered mechanisms that contribute to the potent anticancer activity of 3-Bromopyruvate, and identified this compound as a valuable chemical tool for research in protein ubiquitination. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promyelocytic leukemia protein PML is a growth suppressor essential for induction of apoptosis by diverse apoptotic stimuli. The mechanism by which PML regulates cell death remains unclear. In this study we found that ectopic expression of PML potentiates cell death in the TNFα-resistant tumor line U2OS and significantly sensitized these cells to apoptosis induced by TNFα in a p53-independent manner. Our study demonstrated that both PML and PML/TNFα-induced cell death are associated with DNA fragmentation, activation of caspase-3, -7, -8, and degradation of DFF/ICAD. Furthermore, we found that PML-induced and PML/TNFα-induced cell death could be blocked by the caspase-8 inhibitors crmA and c-FLIP, but not by Bcl-2, the inhibitor of mitochondria-mediated apoptotic pathway. These findings indicate that this cell death event is initiated through the death receptor-dependent apoptosis pathway. Our study further showed that PML recruits NF-kappa B (NF-κB) to the PML nuclear body, blocks NF-κB binding to its cognate enhancer, and represses its transactivation function with the C-terminal region. Therefore PML inhibits the NF-κB survival pathway. Overexpression of NF-κB rescued cell death induced by PML and PML/TNFκ. These results imply that PML is a functional repressor of NF-κB. This notion was further supported by the finding that the PML−/− mouse embryo fibroblasts (MEFs) are more resistant than the wild-type MEFs to TNFκ-induced apoptosis. In conclusion, our studies convincingly demonstrated that PML potentiates cell death through inhibition of the NF-κB survival pathway. Activation of NF-κB frequently occurs during oncogenesis. Our study here suggests that a loss of PML function enhances the NF-κB survival pathway and this event may contribute to tumorigenesis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytoplasmic region of Fas, a mammalian death factor receptor, shares a limited homology with reaper, an apoptosis-inducing protein in Drosophila. Expression of either the Fas cytoplasmic region (FasC) or of reaper in Drosophila cells caused cell death. The death process induced by FasC or reaper was inhibited by crmA or p35, suggesting that its death process is mediated by caspase-like proteases. Both Ac-YVAD aldehyde and Ac-DEVD aldehyde, specific inhibitors of caspase 1- and caspase 3-like proteases, respectively, inhibited the FasC-induced death of Drosophila cells. However, the cell death induced by reaper was inhibited by Ac-DEVD aldehyde, but not by Ac-YVAD aldehyde. A caspase 1-like protease activity that preferentially recognizes the YVAD sequence gradually increased in the cytosolic fraction of the FasC-activated cells, whereas the caspase 3-like protease activity recognizing the DEVD sequence was observed in the reaper-activated cells. Partial purification and biochemical characterization of the proteases indicated that there are at least three distinct caspase-like proteases in Drosophila cells, which are differentially activated by FasC and reaper. The conservation of the Fas-death signaling pathway in Drosophila cells, which is distinct from that for reaper, may indicate that cell death in Drosophila is controlled not only by the reaper suicide gene, but also by a Fas-like killer gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serine/threonine kinase Akt/PKB is a downstream effector molecule of phosphoinositide 3-kinase and is thought to mediate many biological actions toward anti-apoptotic responses. We found that Akt formed a complex with a 90-kDa heat-shock protein (Hsp90) in vivo. By constructing deletion mutants, we identified that amino acid residues 229–309 of Akt were involved in the binding to Hsp90 and amino acid residues 327–340 of Hsp90β were involved in the binding to Akt. Inhibition of Akt-Hsp90 binding led to the dephosphorylation and inactivation of Akt, which increased sensitivity of the cells to apoptosis-inducing stimulus. The dephosphorylation of Akt was caused by an increase in protein phosphatase 2A (PP2A)-mediated dephosphorylation and not by a decrease in 3-phosphoinositide-dependent protein kinase-1-mediated phosphorylation. These results indicate that Hsp90 plays an important role in maintaining Akt kinase activity by preventing PP2A-mediated dephosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a series of new in vitro and in vivo data proving the selective antitumor activity of our somatostatin structural derivative, TT-232. In vitro, it inhibited the proliferation of 20 different human tumor cell lines in the range of 50-95% and induced a very strong apoptosis. In vivo TT-232 was effective on transplanted animal tumors (Colon 26, B16 melanoma, and S180 sarcoma) and on human tumor xenografts. Treatment of MDA-MB-231 human breast cancer xenografted in mice with low submaximal doses of TT-232 [0.25 and 0.5 mg/kg of body weight (b.w.)] caused an average 80% decrease in the tumor volume resulting in 30% tumor-free animals surviving for longer than 200 days. Treatment of prostate tumor (PC-3) xenografted animals with 20 mg/kg of b.w. of TT-232 for 3 weeks resulted in 60% decrease in tumor volume and 100% survival even after 60 days, while 80% of nontreated animals perished. We have demonstrated that TT-232 did not bind to the membrane preparation of rat pituitary and cortex and had no antisecretory activity. TT-232 was not toxic at a dose of 120 mg/kg of b.w. in mice. Long-term incubation (24 h) of tumor cells with TT-232 caused significant inhibition of tyrosine kinases in good correlation with the apoptosis-inducing effect. The level of p53 or KU86 did not change following TT-232 treatment, suggesting a p53-independent apoptotic effect. Preincubation of human breast cancer cells (MDA-MB-453) with TT-232 for 2 h decreased the growth factor receptor autophosphorylation. All of these data suggest that TT-232 is a promising and selective antitumor agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TRAF1 and TRAF2 form an oligomeric complex that associates with the cytoplasmic domains of various members of the tumor necrosis factor (TNF) receptor superfamily. TRAF2 action is required for activation of the transcription factor NF-kappaB triggered by TNF and the CD40 ligand. Here we show that TRAF1 and TRAF2 interact with A20, a zinc finger protein, whose expression is induced by agents that activate NF-kappaB. Mutational analysis revealed that the N-terminal half of A20 interacts with the conserved C-terminal TRAF domain of TRAF1 and TRAF2. In cotransfection experiments, A20 blocked TRAF2-mediated NF-kappaB activation. A20 also inhibited TNF and IL-1-induced NF-kappaB activation, suggesting that it may inhibit NF-kappaB activation signaled by diverse stimuli. The ability of A20 to block NF-kappaB activation was mapped to its C-terminal zinc finger domain. Thus, A20 is composed of two functionally distinct domains, an N-terminal TRAF binding domain that recruits A20 to the TRAF2-TRAF1 complex and a C-terminal domain that mediates inhibition of NF-kappaB activation. Our findings suggest a possible molecular mechanism that could explain A20's ability to negatively regulate its own TNF-inducible expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2,5-hexanedione (2,5HD) is the neurotoxic metabolite of the aliphatic hydrocarbon n-Hexane. The isomers, 2,3-hexanedione (2,3HD) and 3,4-hexanedione (3,4HD) are used as food additives. Although the neurotoxicity of 2,5HD is well established, there are no human data of the possible toxicity of the 2,3- and 3,4- isomers. MTT and flow cytometry were utilised to determine the cytotoxicity of hexanedione isomers in neuroblastoma cells. The neuroblastoma cell lines SK-N-SH and SH-SY5Y are sufficiently neuron-like to provide preliminary assessment of the neurotoxic potential of these isomers, in comparison with toxicity towards human non-neuronal cells. Initial studies showed that 2,5HD was the least toxic in all cell lines at all times (4, 24 and 48h). Although considerably lower than for 2,5HD, in general the IC50s for the α isomers were not significantly different from each other and, besides 4h exposure, the SH-SY5Y cells were significantly more sensitive to 2,3HD and 3,4HD than the SK-N-SH cells. All three isomers caused varying degrees of apoptosis in the neuroblastoma lines, with 3,4HD more potent than 2,3HD. Flow cytometry highlighted cell cycle arrest indicative of DNA damage with 2,3- and 3,4HD. The toxicity of the isomers towards 3 non-neuronal cell lines (MCF7, HepG2 and CaCo-2) was assessed by MTT assay. All 3 hexanedione isomers proved to be cytotoxic in all non-neuronal cell lines at all time points. These data suggest cytotoxicity of 2,3- and 3,4HD (mM range), but it is difficult to define this as specific neurotoxicity in the absence of specific neurotoxic endpoints. However, the neuroblastomas were significantly more susceptible to the cytotoxic effects of the α hexanedione isomers at exposures of 4 and 24 hours, compared to non-neuronal lines. Finally, a mechanism of toxicity is suggested for the α HD isomers whereby inhibition of the oxoglutarate carrier (OGC) releases apoptosis inducing factor (AIF), causing apoptosis-like cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EPA has been clinically shown to reduce muscle wasting during cancer cachexia. This study investigates whether curcumin or green tea extract (GTE) enhances the ability of low doses of eicosapentaenoic acid (EPA) to reduce loss of muscle protein in an in vitro model. A low dose of EPA with minimal anti-cachectic activity was chosen to evaluate any potential synergistic effect with curcumin or GTE. Depression of protein synthesis and increase in degradation was determined in C2C12 myotubes in response to tumour necrosis factor-α (TNF-α) and proteolysis-inducing factor (PIF). EPA (50 μM) or curcumin (10 μg ml−1) alone had little effect on protein degradation caused by PIF but the combination produced complete inhibition, as did the combination with GTE (10 μg ml−1). In response to TNF-α (25 ng ml−1)-induced protein degradation, EPA had a small, but not significant effect on protein degradation; however, when curcumin and GTE were combined with EPA, the effect was enhanced. EPA completely attenuated the depression of protein synthesis caused by TNF-α, but not that caused by PIF. The combination of EPA with curcumin produced a significant increase in protein synthesis to both agents. GTE alone or in combination with EPA had no effect on the depression of protein synthesis by TNF-α, but did significantly increase protein synthesis in PIF-treated cells. Both TNF-α and PIF significantly reduced myotube diameter from 17 to 13 μm for TNF-α (23.5%) and 15 μm (11.8%) for PIF However the triple combination of EPA, curcumin and GTE returned diameters to values not significantly different from the control. These results suggest that either curcumin or GTE or the combination could enhance the anti-catabolic effect of EPA on lean body mass.