985 resultados para TISSUE MICROARRAY
Resumo:
Background: Although there is evidence that post-mortem interval (PMI) is not a major contributor to reduced overall RNA integrity, it may differentially affect a subgroup of gene transcripts that are susceptible to PMI-related degradation. This would particularly have ramifications for microarray studies that include a broad spectrum of genes. Method: Brain tissue was removed from adult mice at 0, 6, 12, 18, 24,36 and 48 h post-mortem. RNA transcript abundance was measured by hybridising RNA from the zero time point with test RNA from each PMI time point, and differential gene expression was assessed using cDNA microarrays. Sequence and ontological analyses were performed on the group of RNA transcripts showing greater than two-fold reduction. Results: Increasing PMI was associated with decreased tissue pH and increased RNA degradation as indexed by 28S/18S ribosomal RNA ratio. Approximately 12% of mRNAs detected on the arrays displayed more than a two-fold decrease in abundance by 48 It post-mortem. An analysis of nucleotide composition provided evidence that transcripts with the AUUUA motif in the 3' untranslated region (3'UTR) were more susceptible to PMI-related RNA degradation, compared to transcripts not carrying the 3'UTR AUUUA motif. Consistent with this finding, ontological analysis showed transcription factors and elements to be over-represented in the group of transcripts susceptible to degradation. Conclusion: A subgroup of mammalian mRNA transcripts are particularly susceptible to PMI-related degradation, and as a group, they are more likely to carry the YUTR AUUUA motif. PMI should be controlled for in human and animal model post-mortem brain studies, particularly those including a broad spectrum of mRNA transcripts. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper considers a model-based approach to the clustering of tissue samples of a very large number of genes from microarray experiments. It is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. Frequently in practice, there are also clinical data available on those cases on which the tissue samples have been obtained. Here we investigate how to use the clinical data in conjunction with the microarray gene expression data to cluster the tissue samples. We propose two mixture model-based approaches in which the number of components in the mixture model corresponds to the number of clusters to be imposed on the tissue samples. One approach specifies the components of the mixture model to be the conditional distributions of the microarray data given the clinical data with the mixing proportions also conditioned on the latter data. Another takes the components of the mixture model to represent the joint distributions of the clinical and microarray data. The approaches are demonstrated on some breast cancer data, as studied recently in van't Veer et al. (2002).
Resumo:
Seeking new biomarkers for epithelial ovarian cancer, the fifth most common cause of death from all cancers in women and the leading cause of death from gynaecological malignancies, we performed a meta-analysis of three independent studies and compared the results in regard to clinicopathological parameters. This analysis revealed that GAS6 was highly expressed in ovarian cancer and therefore was selected as our candidate of choice. GAS6 encodes a secreted protein involved in physiological processes including cell proliferation, chemotaxis, and cell survival. We performed immunohistochemistry on various ovarian cancer tissues and found that GAS6 expression was elevated in tumour tissue samples compared to healthy control samples (P < 0.0001). In addition, GAS6 expression was also higher in tumours from patients with residual disease compared to those without. Our data propose GAS6 as an independent predictor of poor survival, suggesting GAS6, both on the mRNA and on the protein level, as a potential biomarker for ovarian cancer. In clinical practice, the staining of a tumour biopsy for GAS6 may be useful to assess cancer prognosis and/or to monitor disease progression.
Resumo:
Background: In the spondyloarthropathies, the underlying molecular and cellular pathways driving disease are poorly understood. By undertaking a study in knee synovial biopsies from spondyloarthropathy (SpA) and ankylosing spondylitis (AS) patients we aimed to elucidate dysregulated genes and pathways. Methods RNA was extracted from six SpA, two AS, three osteoarthritis (OA) and four normal control knee synovial biopsies. Whole genome expression profiling was undertaken using the Illumina DASL system, which assays 24000 cDNA probes. Differentially expressed candidate genes were then validated using quantitative PCR and immunohistochemistry. Results: Four hundred and sixteen differentially expressed genes were identified that clearly delineated between AS/SpA and control groups. Pathway analysis showed altered gene-expression in oxidoreductase activity, B-cell associated, matrix catabolic, and metabolic pathways. Altered «myogene» profiling was also identified. The inflammatory mediator, MMP3, was strongly upregulated (5-fold) in AS/SpA samples and the Wnt pathway inhibitors DKK3 (2.7-fold) and Kremen1 (1.5-fold) were downregulated. Conclusions: Altered expression profiling in SpA and AS samples demonstrates that disease pathogenesis is associated with both systemic inflammation as well as local tissue alterations that may underlie tissue damaging modelling and remodelling outcomes. This supports the hypothesis that initial systemic inflammation in spondyloarthropathies transfers to and persists in the local joint environment, and might subsequently mediate changes in genes directly involved in the destructive tissue remodelling.
Resumo:
Introduction: A number of genetic-association studies have identified genes contributing to ankylosing spondylitis (AS) susceptibility but such approaches provide little information as to the gene activity changes occurring during the disease process. Transcriptional profiling generates a 'snapshot' of the sampled cells' activity and thus can provide insights into the molecular processes driving the disease process. We undertook a whole-genome microarray approach to identify candidate genes associated with AS and validated these gene-expression changes in a larger sample cohort. Methods: A total of 18 active AS patients, classified according to the New York criteria, and 18 gender- and age-matched controls were profiled using Illumina HT-12 whole-genome expression BeadChips which carry cDNAs for 48,000 genes and transcripts. Class comparison analysis identified a number of differentially expressed candidate genes. These candidate genes were then validated in a larger cohort using qPCR-based TaqMan low density arrays (TLDAs). Results: A total of 239 probes corresponding to 221 genes were identified as being significantly different between patients and controls with a P-value <0.0005 (80% confidence level of false discovery rate). Forty-seven genes were then selected for validation studies, using the TLDAs. Thirteen of these genes were validated in the second patient cohort with 12 downregulated 1.3- to 2-fold and only 1 upregulated (1.6-fold). Among a number of identified genes with well-documented inflammatory roles we also validated genes that might be of great interest to the understanding of AS progression such as SPOCK2 (osteonectin) and EP300, which modulate cartilage and bone metabolism. Conclusions: We have validated a gene expression signature for AS from whole blood and identified strong candidate genes that may play roles in both the inflammatory and joint destruction aspects of the disease.
Resumo:
Copy number variations (CNVs) as described in the healthy population are purported to contribute significantly to genetic heterogeneity. Recent studies have described CNVs using lymphoblastoid cell lines or by application of specifically developed algorithms to interrogate previously described data. However, the full extent of CNVs remains unclear. Using high-density SNP array, we have undertaken a comprehensive investigation of chromosome 18 for CNV discovery and characterisation of distribution and association with chromosome architecture. We identified 399 CNVs, of which loss represents 98%, 58% are less than 2.5 kb in size and 71% are intergenic. Intronic deletions account for the majority of copy number changes with gene involvement. Furthermore, one-third of CNVs do not have putative breakpoints within repetitive sequences. We conclude that replicative processes, mediated either by repetitive elements or microhomology, account for the majority of CNVs in the healthy population. Genomic instability involving the formation of a non-B structure is demonstrated in one region.
Resumo:
Background: Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. At present no reliable biomarkers are available to guide the management of this condition. Microarray technology may allow appropriate biomarkers to be identified but present platforms are lacking disease focus and are thus likely to miss potentially vital information contained in patient tissue samples.
Resumo:
Lung T lymphocytes are important in pulmonary immunity and inflammation. it has been difficult to study these cells due to contamination with other cell types, mainly alveolar macrophages. We have developed a novel method for isolating lung T cells from lung resection tissue, using a combination of approaches. Firstly the lung tissue was finely chopped and filtered through a nylon mesh. Lymphocytic cells were enriched by Percoll density centrifugation and the T cells purified using human CD3 microbeads, resulting in 90.5% +/- 1.9% (n = 11) pure lymphocytes. The T cell yield from the crude cell preparation was 10.8 +/- 2.1% and viability, calculated using propidium iodide (PI) staining and trypan blue, was typically over 95%. The purification process did not affect expression of CD69 or CD103, nor was there a difference in the proportion of CD4 and CD8 cells between the starting population and the purified cells. Microarray analysis and real time RT-PCR revealed upregulation of GAPDH and CXCR6 of the lung T cells as compared to blood-derived T cells. This technique highly enriches lung T cells to allow detailed investigation of the biology of these cells. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Purpose: Current prognostic factors are poor at identifying patients at risk of disease recurrence after surgery for stage II colon cancer. Here we describe a DNA microarray-based prognostic assay using clinically relevant formalin-fixed paraffin-embedded (FFPE) samples. Patients and Methods: A gene signature was developed from a balanced set of 73 patients with recurrent disease (high risk) and 142 patients with no recurrence (low risk) within 5 years of surgery. Results: The 634-probe set signature identified high-risk patients with a hazard ratio (HR) of 2.62 (P <.001) during cross validation of the training set. In an independent validation set of 144 samples, the signature identified high-risk patients with an HR of 2.53 (P <.001) for recurrence and an HR of 2.21 (P = .0084) for cancer-related death. Additionally, the signature was shown to perform independently from known prognostic factors (P <.001). Conclusion: This gene signature represents a novel prognostic biomarker for patients with stage II colon cancer that can be applied to FFPE tumor samples. © 2011 by American Society of Clinical Oncology.
Resumo:
Aims/hypothesis: Matrix metalloproteinases (MMPs) and their natural inhibitors, tissue inhibitor of metalloproteinases (TIMPs), regulate important biological processes including the homeostasis of the extracellular matrix, proteolysis of cell surface proteins, proteinase zymogen activation, angiogenesis and inflammation. Studies have shown that their balance is altered in retinal microvascular tissues in diabetes. Since LDLs modified by oxidation/glycation are implicated in the pathogenesis of diabetic vascular complications, we examined the effects of modified LDL on the gene expression and protein production of MMPs and TIMPs in retinal pericytes. Methods: Quiescent human retinal pericytes were exposed to native LDL (N-LDL), glycated LDL (G-LDL) and heavily oxidised and glycated LDL (HOG-LDL) for 24 h. We studied the expression of the genes encoding MMPs and TIMPs mRNAs by analysis of microarray data and quantitative PCR, and protein levels by immunoblotting and ELISA. Results: Microarray analysis showed that MMP1, MMP2, MMP11, MMP14 and MMP25 and TIMP1, TIMP2, TIMP3 and TIMP4 were expressed in pericytes. Of these, only TIMP3 mRNA showed altered regulation, being expressed at significantly lower levels in response to HOG- vs N-LDL. Quantitative PCR and immunoblotting of cell/matrix proteins confirmed the reduction in TIMP3 mRNA and protein in response to HOG-LDL. In contrast to cellular TIMP3 protein, analysis of secreted TIMP1, TIMP2, MMP1 and collagenase activity indicated no changes in their production in response to modified LDL. Combined treatment with N- and HOG-LDL restored TIMP3 mRNA expression to a level comparable with that after N-LDL alone. Conclusions/interpretation: Among the genes encoding for MMPs and TIMPs expressed in retinal pericytes, TIMP3 is uniquely regulated by HOG-LDL. Reduced TIMP3 expression might contribute to microvascular abnormalities in diabetic retinopathy. © 2007 Springer-Verlag.
Resumo:
The identification of genes involved in signaling and regulatory pathways, and matrix formation is paramount to the better understanding of the complex mechanisms of bone formation and mineralization, and critical to the successful development of therapies for human skeletal disorders. To achieve this objective, in vitro cell systems derived from skeletal tissues and able to mineralize their extracellular matrix have been used to identify genes differentially expressed during mineralization and possibly new markers of bone and cartilage homeostasis. Using cell systems of fish origin and techniques such as suppression subtractive hybridization and microarray hybridization, three genes never associated with mechanisms of calcification were identified: the calcium binding protein S100-like, the short-chain dehydrogenase/reductase sdr-like and the betaine homocysteine S-methyltransferase bhmt3. Analysis of the spatial-temporal expression of these 3 genes by qPCR and in situ hybridization revealed: (1) the up-regulation of sdr-like transcript during in vitro mineralization of gilthead seabream cell lines and its specificity for calcified tissues and differentiating osteoblasts; (2) the up-regulation of S100-like and the down-regulation of bhmt3 during in vitro mineralization and the central role of both genes in cartilaginous tissues undergoing endo/perichondral mineralization in juvenile fish. While expression of S100-like and bhmt3 was restricted to calcified tissues, sdr-like transcript was also detected in soft tissues, in particular in tissues of the gastrointestinal tract. Functional analysis of gene promoters revealed the transcriptional regulation of the 3 genes by known regulators of osteoblast and chondrocyte differentiation/mineralization: RUNX2 and RAR (sdr-like), ETS1 (s100-like; bhmt3), SP1 and MEF2c (bhmt3). The evolutionary relationship of the different orthologs and paralogs identified within the scope of this work was also inferred from taxonomic and phylogenetic analyses and revealed novel protein subfamilies (S100-like and Sdr-like) and the explosive diversity of Bhmt family in particular fish groups (Neoteleostei). Altogether our results contribute with new data on SDR, S100 and BHMT proteins, evidencing for the first time the role for these three proteins in mechanisms of mineralization in fish and emphasized their potential as markers of mineralizing cartilage and bone in developing fish.
Resumo:
La stimulation du récepteur de la rénine/prorénine [(P) RR], un membre récemment découvert du système rénine-angiotensine (SRA), augmente l'activité du SRA et des voies de signalisation angiotensine II-indépendante. Pour étudier l'impact potentiel du (P)RR dans le développement de l`obésité, nous avons émis l'hypothèse que les souris déficientes en (P)RR uniquement dans le tissus adipeux (KO) auront une diminution du poids corporel en ciblant le métabolisme du tissu adipeux, l'activité locomoteur et/ou la prise alimentaire. Ainsi, des souris KO ont été générées en utilisant la technologie Cre/Lox. Le gain de poids et la prise alimentaire ont été évalués hebdomadairement dans les mâles et femelles KO et de type sauvage (WT) pendant 4 semaines alors qu’ils étaient maintenu sur une diète normal. De plus, un groupe de femelles a été placé pour 6 semaines sur une diète riche en gras et en glucides (HF/HC). La composition corporelle et l'activité ambulatoire ont été évaluées par l’EchoMRI et à l’aide de cages Physioscan, respectivement. Les tissus adipeux ont été prélevés et pesés. De plus, les gras péri-gonadaux ont été utilisés pour le microarray. Finalement, le niveaux d'expression d'ARNm du (P)RR ont été évalués. Comme le gène du (P)RR est situé sur le chromosome X, les mâles étaient des KOs complets et les femelles étaient des KOs partielles. Les souris KO avaient un poids corporel significativement plus petit par rapport à WT, les différences étant plus prononcées chez les mâles. De plus, les femelles KOs étaient résistantes à l'obésité lorsqu'elles ont été placées sur la diète HF/HC et donc elles avaient significativement moins de masse grasse par rapport aux WTs. L’analyse histologique des gras péri-gonadaux des KOs nous ont dévoilés qu’il avait une réduction du nombre d'adipocytes mais de plus grande taille. Bien qu'il n'y ait eu aucun changement dans la consommation alimentaire, une augmentation de près de 3 fois de l'activité ambulatoire a été détectée chez les mâles. De plus, nous avons observé que leurs tibias étaient de longueur réduite ce qui suggère fortement l'affection de leur développement. Les gras péri-gonadaux des souris KO avaient une expression réduite de l`ABLIM2 (Actin binding LIM protein family, member 2) qui est associé avec le diabète de type II chez l'humain. Ainsi, les données recueillies suggèrent fortement que le (P)RR est impliquée dans la régulation du poids corporelle.
Resumo:
Emergent molecular measurement methods, such as DNA microarray, qRTPCR, and many others, offer tremendous promise for the personalized treatment of cancer. These technologies measure the amount of specific proteins, RNA, DNA or other molecular targets from tumor specimens with the goal of “fingerprinting” individual cancers. Tumor specimens are heterogeneous; an individual specimen typically contains unknown amounts of multiple tissues types. Thus, the measured molecular concentrations result from an unknown mixture of tissue types, and must be normalized to account for the composition of the mixture. For example, a breast tumor biopsy may contain normal, dysplastic and cancerous epithelial cells, as well as stromal components (fatty and connective tissue) and blood and lymphatic vessels. Our diagnostic interest focuses solely on the dysplastic and cancerous epithelial cells. The remaining tissue components serve to “contaminate” the signal of interest. The proportion of each of the tissue components changes as a function of patient characteristics (e.g., age), and varies spatially across the tumor region. Because each of the tissue components produces a different molecular signature, and the amount of each tissue type is specimen dependent, we must estimate the tissue composition of the specimen, and adjust the molecular signal for this composition. Using the idea of a chemical mass balance, we consider the total measured concentrations to be a weighted sum of the individual tissue signatures, where weights are determined by the relative amounts of the different tissue types. We develop a compositional source apportionment model to estimate the relative amounts of tissue components in a tumor specimen. We then use these estimates to infer the tissuespecific concentrations of key molecular targets for sub-typing individual tumors. We anticipate these specific measurements will greatly improve our ability to discriminate between different classes of tumors, and allow more precise matching of each patient to the appropriate treatment
Resumo:
Lung cancer is the leading cause of cancer deaths in the United States, surpassing breast cancer as the primary cause of cancer-related mortality in women. The goal of the present study was to identify early molecular changes in the lung induced by exposure to tobacco smoke and thus identify potential targets for chemoprevention. Female A/J mice were exposed to either tobacco smoke or HEPA-filtered air via a whole-body exposure chamber (6 h/d, 5 d/wk for 3, 8, and 20 weeks). Gene expression profiles of lung tissue from control and smoke-exposed animals were established using a 15K cDNA microarray. Cytochrome P450 1b1, a phase I enzyme involved in both the metabolism of xenobiotics and the 4-hydroxylation of 17 beta-estradiol (E(2)), was modulated to the greatest extent following smoke exposure. A panel of 10 genes were found to be differentially expressed in control and smoke-exposed lung tissues at 3, 8, and 20 weeks (P < 0.001). The interaction network of these differentially expressed genes revealed new pathways modulated by short-term smoke exposure, including estrogen metabolism. In addition, E(2) was detected within murine lung tissue by gas chromatography-coupled mass spectrometry and immunohistochemistry. Identification of the early molecular events that contribute to lung tumor formation is anticipated to lead to the development of promising targeted chemopreventive therapies. In conclusion, the presence of E2 within lung tissue when combined with the modulation of cytochrome P450 1b1 and other estrogen metabolism genes by tobacco smoke provides novel insight into a possible role for estrogens in lung cancer. Cancer Prev Res; 3(6); 707-17. (C) 2010 AACR.