953 resultados para TISSUE DOPPLER IMAGING
Resumo:
We present the first analytical approach to demonstrate the in situ imaging of metabolites from formalin-fixed, paraffin-embedded (FFPE) human tissue samples. Using high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR MSI), we conducted a proof-of-principle experiment comparing metabolite measurements from FFPE and fresh frozen tissue sections, and found an overlap of 72% amongst 1700 m/z species. In particular, we observed conservation of biomedically relevant information at the metabolite level in FFPE tissues. In biomedical applications, we analysed tissues from 350 different cancer patients and were able to discriminate between normal and tumour tissues, and different tumours from the same organ, and found an independent prognostic factor for patient survival. This study demonstrates the ability to measure metabolites in FFPE tissues using MALDI-FT-ICR MSI, which can then be assigned to histology and clinical parameters. Our approach is a major technical, histochemical, and clinicopathological advance that highlights the potential for investigating diseases in archived FFPE tissues.
Resumo:
BACKGROUND Insulinomas are rare tumors, in the majority of cases best treated by surgical resection. Preoperative localization of insulinoma is challenging. The more precise the preoperative localization the less invasive and safer is the resection. The purpose of the study is to check the impact of a new technique to localize insulinoma on the surgical strategy. FINDINGS We present exact preoperative localization with Glucagon-like peptide-1 receptor (GLP-1R) imaging. This allows a more precise resection thereby reducing surgical access trauma, loss of healthy pancreatic tissue and increasing safety and quality of the surgical intervention. CONCLUSION With the help of precise preoperative localization of insulinoma with GLP-1R imaging the surgeon is able to minimize the amount of resected healthy pancreatic tissue. We hypothesize that GLP-1R imaging will become a preoperative diagnostic tool to be used for many patients scheduled for open or laparoscopic insulinoma resection.
Resumo:
MP2RAGE has proven to be a bias-free MR acquisition with excellent contrast between grey and white matter. We investigated the ability of three state-of-the-art algorithms to automatically extract white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) from MPRAGE and MP2RAGE images: unified Segmentation (S) in SPM82 , its extension New Segment (NS), and an in-house Expectation-Maximization Markov Random Field tissue classification3 (EM-MRF) with Graph Cut (GC) optimization4 . Our goal is to quantify the differences between MPRAGE and MP2RAGE-based brain tissue probability maps.
Resumo:
A hybrid protein, tPA/GFP, consisting of rat tissue plasminogen activator (tPA) and green fluorescent protein (GFP) was expressed in PC12 cells and used to study the distribution, secretory behavior, and dynamics of secretory granules containing tPA in living cells with a neuronal phenotype. High-resolution images demonstrate that tPA/GFP has a growth cone-biased distribution in differentiated cells and that tPA/GFP is transported in granules of the regulated secretory pathway that colocalize with granules containing secretogranin II. Time-lapse images of secretion reveal that secretagogues induce substantial loss of cellular tPA/GFP fluorescence, most importantly from growth cones. Time-lapse images of the axonal transport of granules containing tPA/GFP reveal a surprising complexity to granule dynamics. Some granules undergo canonical fast axonal transport; others move somewhat more slowly, especially in highly fluorescent neurites. Most strikingly, granules traffic bidirectionally along neurites to an extent that depends on granule accumulation, and individual granules can reverse their direction of motion. The retrograde component of this bidirectional transport may help to maintain cellular homeostasis by transporting excess tPA/GFP back toward the cell body. The results presented here provide a novel view of the axonal transport of secretory granules. In addition, the results suggest that tPA is targeted for regulated secretion from growth cones of differentiated cells, strategically positioning tPA to degrade extracellular barriers or to activate other barrier-degrading proteases during axonal elongation.
Resumo:
Due to complex field/tissue interactions, high-field magnetic resonance (MR) images suffer significant image distortions that result in compromised diagnostic quality. A new method that attempts to remove these distortions is proposed in this paper and is based on the use of transceiver-phased arrays. The proposed system uses, in the examples presented herein, a shielded four-element transceive-phased array head coil and involves performing two separate scans of the same slice with each scan using different excitations during transmission. By optimizing the amplitudes and phases for each scan, antipodal signal profiles can be obtained, and by combining both the images together, the image distortion can be reduced several fold. A combined hybrid method of moments (MoM)/finite element method (FEM) and finite-difference time-domain (FDTD) technique is proposed and used to elucidate the concept of the new method and to accurately evaluate the electromagnetic field (EMF) in a human head model. In addition, the proposed method is used in conjunction with the generalized auto-calibrating partially parallel acquisitions (GRAPPA) reconstruction technique to enable rapid imaging of the two scans. Simulation results reported herein for 11-T (470-MHz) brain imaging applications show that the new method with GRAPPA reconstruction theoretically results in improved image quality and that the proposed combined hybrid MoM/FEM and FDTD technique is. suitable for high-field magnetic resonance imaging (MRI) numerical analysis.
Resumo:
We have used MALDI-MS imaging (MALDI-MSI) to monitor the time dependent appearance and loss of signals when tissue slices are brought rapidly to room temperature for short to medium periods of time. Sections from mouse brain were cut in a cryostat microtome, placed on a MALDI target and allowed to warm to room temperature for 30 s to 3 h. Sections were then refrozen, fixed by ethanol treatment and analysed by MALDI-MSI. The intensity of a range of markers were seen to vary across the time course, both increasing and decreasing, with the intensity of some markers changing significantly within 30 s and markers also showed tissue location specific evolution. The markers resulting from this autolysis were compared directly to those that evolved in a comparable 16 h on-tissue trypsin digest, and the markers that evolved in the two studies were seen to be substantially different. These changes offer an important additional level of location-dependent information for mapping changes and seeking disease-dependent biomarkers in the tissue. They also indicate that considerable care is required to allow comparison of biomarkers between MALDI-MSI experiments and also has implications for the standard practice of thaw-mounting multiple tissue sections onto MALDI-MS targets.
Resumo:
The use of MS imaging (MSI) to resolve the spatial and pharmacodynamic distributions of compounds in tissues is emerging as a powerful tool for pharmacological research. Unlike established imaging techniques, only limited a priori knowledge is required and no extensive manipulation (e.g., radiolabeling) of drugs is necessary prior to dosing. MS provides highly multiplexed detection, making it possible to identify compounds, their metabolites and other changes in biomolecular abundances directly off tissue sections in a single pass. This can be employed to obtain near cellular, or potentially subcellular, resolution images. Consideration of technical limitations that affect the process is required, from sample preparation through to analyte ionization and detection. The techniques have only recently been adapted for imaging and novel variations to the established MSI methodologies will further enhance the application of MSI for pharmacological research.
Resumo:
A dry matrix application for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was used to profile the distribution of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylate, monohydrochloride (BDNC, SSR180711) in rat brain tissue sections. Matrix application involved applying layers of finely ground dry alpha-cyano-4-hydroxycinnamic acid (CHCA) to the surface of tissue sections thaw mounted onto MALDI targets. It was not possible to detect the drug when applying matrix in a standard aqueous-organic solvent solution. The drug was detected at higher concentrations in specific regions of the brain, particularly the white matter of the cerebellum. Pseudomultiple reaction monitoring imaging was used to validate that the observed distribution was the target compound. The semiquantitative data obtained from signal intensities in the imaging was confirmed by laser microdissection of specific regions of the brain directed by the imaging, followed by hydrophilic interaction chromatography in combination with a quantitative high-resolution mass spectrometry method. This study illustrates that a dry matrix coating is a valuable and complementary matrix application method for analysis of small polar drugs and metabolites that can be used for semiquantitative analysis.