951 resultados para THREE-DIMENSIONAL SYSTEM
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.
Resumo:
Objective To evaluate the reliability of two- and three-dimensional ultrasonographic measurement of the thickness of the lower uterine segment (LUS) in pregnant women by transvaginal and transabdominal approaches. Methods This was a study of 30 pregnant women who bad bad at least one previous Cesarean section and were between 36 and 39 weeks` gestation, with singleton pregnancies in cephalic presentation. Sonographic examinations were performed by two observers using both 4-7-MHz transabdominal and 5-8-MHz transvaginal volumetric probes. LUS measurements were performed using two- and three-dimensional ultrasound, evaluating the entire LUS thickness transabdominally and the LUS muscular thickness transvaginally. Each observer measured the LUS four times by each method. Reliability was analyzed by comparing the mean of the absolute differences, the intraclass correlation coefficients, the 95% limits of agreement and the proportion of differences <1 mm. Results Transvaginal ultrasound provided greater reliability in LUS measurements than did transabdominal ultrasound. The use of three-dimensional ultrasound improved significantly the reliability of the LUS muscular thickness measurement obtained transvaginally. Conclusions Ultrasonographic measurement of the LUS muscular thickness transvaginally appears more reliable than does that of the entire LUS thickness transabdominally. The use of three-dimensional ultrasound should be considered to improve measurement reliability. Copyright (c) 2009 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
In the present paper were analysed the three-dimensional characteristics of the interface epithelium-connective tissue surface of finger prints of Cebus apella monkey employing the scanning electron microscopic methods. The connective tissue core (CTC) and epithelial papillae were examined verifying the three-dimensional configuration of the tissue projections. The samples were fixed in Bouin solsution for histologic preparations and in modified Karnovsky for examine to observe in scanning electron microscopy. After treatment in the 10% NaOH solution during 3 to 5 days, the surface of finger prints revealed a distribution of CTC of lamina propria in situ showing original three-dimensional SEM images. The linear and circular dispositions CTC, and the furrows were clearly identified. Each pointed papilla presented a large base and longitudinal disposition of thick collagen fiber bundles and in some areas with a complex reticular formations. The longitudinal furrows between the pointed papillae exhibited a dense layer of connective tissue and showed only low CTC or laminar in shape. The presence of numerous foramina of sweat gland were noted in three-dimensional SEM images.
Resumo:
Objective. The purpose of this research was to provide further evidence to demonstrate the precision and accuracy of maxillofacial linear and angular measurements obtained by cone-beam computed tomography (CBCT) images. Study design. The study population consisted of 15 dry human skulls that were submitted to CBCT, and 3-dimensional (3D) images were generated. Linear and angular measurements based on conventional craniometric anatomical landmarks, and were identified in 3D-CBCT images by 2 radiologists twice each independently. Subsequently, physical measurements were made by a third examiner using a digital caliper and a digital goniometer. Results. The results demonstrated no statistically significant difference between inter-and intra-examiner analysis. Regarding accuracy test, no statistically significant differences were found of the comparison between the physical and CBCT-based linear and angular measurements for both examiners (P = .968 and .915, P = .844 and .700, respectively). Conclusions. 3D-CBCT images can be used to obtain dimensionally accurate linear and angular measurements from bony maxillofacial structures and landmarks. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 430-436)
Resumo:
Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Ligaments undergo finite strain displaying hyperelastic behaviour as the initially tangled fibrils present straighten out, combined with viscoelastic behaviour (strain rate sensitivity). In the present study the anterior cruciate ligament of the human knee joint is modelled in three dimensions to gain an understanding of the stress distribution over the ligament due to motion imposed on the ends, determined from experimental studies. A three dimensional, finite strain material model of ligaments has recently been proposed by Pioletti in Ref. [2]. It is attractive as it separates out elastic stress from that due to the present strain rate and that due to the past history of deformation. However, it treats the ligament as isotropic and incompressible. While the second assumption is reasonable, the first is clearly untrue. In the present study an alternative model of the elastic behaviour due to Bonet and Burton (Ref. [4]) is generalized. Bonet and Burton consider finite strain with constant modulii for the fibres and for the matrix of a transversely isotropic composite. In the present work, the fibre modulus is first made to increase exponentially from zero with an invariant that provides a measure of the stretch in the fibre direction. At 12% strain in the fibre direction, a new reference state is then adopted, after which the material modulus is made constant, as in Bonet and Burton's model. The strain rate dependence can be added, either using Pioletti's isotropic approximation, or by making the effect depend on the strain rate in the fibre direction only. A solid model of a ligament is constructed, based on experimentally measured sections, and the deformation predicted using explicit integration in time. This approach simplifies the coding of the material model, but has a limitation due to the detrimental effect on stability of integration of the substantial damping implied by the nonlinear dependence of stress on strain rate. At present, an artificially high density is being used to provide stability, while the dynamics are being removed from the solution using artificial viscosity. The result is a quasi-static solution incorporating the effect of strain rate. Alternate approaches to material modelling and integration are discussed, that may result in a better model.
Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from rhesus macaque leukocytes
Resumo:
Most mammalian defensins are cationic peptides of 29-42 amino acids long, stabilized by three disulfide bonds. However, recently Tang et al. (1999, Science 286, 498-502) reported the isolation of a new defensin type found in the leukocytes of rhesus macaques. In contrast to all the other defensins found so far, rhesus theta defensin-1 (RTD-1) is composed of just 18 amino acids with the backbone cyclized through peptide bonds. Antibacterial activities of both the native cyclic peptide and a linear form were examined, showing that the cyclic form was 3-fold more active than the open chain analogue [Tang et al. (1999) Science 286, 498-502]. To elucidate the three-dimensional structure of RTD-1 and its open chain analogue, both peptides were synthesized using solid-phase peptide synthesis and tert-butyloxycarbonyl chemistry. The structures of both peptides in aqueous solution were determined from two-dimensional H-1 NMR data recorded at 500 and 750 MHz. Structural constraints consisting of interproton distances and dihedral angles were used as input for simulated-annealing calculations and water refinement with the program CNS. RTD-1 and its open chain analogue oRTD-1 adopt very similar structures in water. Both comprise an extended beta -hairpin structure with turns at one or both ends. The turns are well defined within themselves and seem to be flexible with respect to the extended regions of the molecules. Although the two strands of the beta -sheet are connected by three disulfide bonds, this region displays a degree of flexibility. The structural similarity of RTD-1 and its open chain analogue oRTD-1, as well as their comparable degree of flexibility, support the theory that the additional charges at the termini of the open chain analogue rather than overall differences in structure or flexibility are the cause for oRTD-1's lower antimicrobial activity. In contrast to numerous other antimicrobial peptides, RTD-1 does not display any amphiphilic character, even though surface models of RTD-1 exhibit a certain clustering of positive charges. Some amide protons of RTD-1 that should be solvent-exposed in monomeric beta -sheet structures show low-temperature coefficients, suggesting the possible presence of weak intermolecular hydrogen bonds.
Resumo:
Three-dimensional (3D) synthetic aperture radar (SAR) imaging via multiple-pass processing is an extension of interferometric SAR imaging. It exploits more than two flight passes to achieve a desired resolution in elevation. In this paper, a novel approach is developed to reconstruct a 3D space-borne SAR image with multiple-pass processing. It involves image registration, phase correction and elevational imaging. An image model matching is developed for multiple image registration, an eigenvector method is proposed for the phase correction and the elevational imaging is conducted using a Fourier transform or a super-resolution method for enhancement of elevational resolution. 3D SAR images are obtained by processing simulated data and real data from the first European Remote Sensing satellite (ERS-1) with the proposed approaches.
Resumo:
The role of PACs (primary adsorption centers) in the mesopore (i.e., transport) region of activated carbons during adsorption of polar species, such as water, is unclear. A classical model of three-dimensional adsorption on finite PACs is presented. The model is a preliminary, theoretical investigation into adsorption on mesopore PACs and is intended to give some insight into the energetic and physical processes at work. Work processes are developed to obtain isotherms and three-dimensional sorbate growth on PACs of varying size and energetic characteristics. The work processes allow two forms of adsorbed phase growth: densification at constant boundary and boundary growth at constant density. Relatively strong sorbate-sorbent interactions and strong surface tension favor adsorbed phase densification over boundary growth. Conversely, relatively weak sorbate-sorbent interactions and weak surface tension favor boundary growth over densification. If sorbate-sorbate interactions are strong compared to sorbate-sorbent interactions, condensation with hysteresis occurs. This can also give rise to delayed boundary growth, where all initial adsorption occurs in the monolayer only. The results indicate that adsorbed phase growth on PACs may be quite complex.
Resumo:
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an a-helix and a triple-stranded anti-parallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized up motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure - activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.
Resumo:
The tongue is the most important and dynamic articulator for speech formation, because of its anatomic aspects (particularly, the large volume of this muscular organ comparatively to the surrounding organs of the vocal tract) and also due to the wide range of movements and flexibility that are involved. In speech communication research, a variety of techniques have been used for measuring the three-dimensional vocal tract shapes. More recently, magnetic resonance imaging (MRI) becomes common; mainly, because this technique allows the collection of a set of static and dynamic images that can represent the entire vocal tract along any orientation. Over the years, different anatomical organs of the vocal tract have been modelled; namely, 2D and 3D tongue models, using parametric or statistical modelling procedures. Our aims are to present and describe some 3D reconstructed models from MRI data, for one subject uttering sustained articulations of some typical Portuguese sounds. Thus, we present a 3D database of the tongue obtained by stack combinations with the subject articulating Portuguese vowels. This 3D knowledge of the speech organs could be very important; especially, for clinical purposes (for example, for the assessment of articulatory impairments followed by tongue surgery in speech rehabilitation), and also for a better understanding of acoustic theory in speech formation.
Resumo:
The widespread employment of carbon-epoxy laminates in high responsibility and severely loaded applications introduces an issue regarding their handling after damage. Repair of these structures should be evaluated, instead of their disposal, for cost saving and ecological purposes. Under this perspective, the availability of efficient repair methods is essential to restore the strength of the structure. The development and validation of accurate predictive tools for the repairs behaviour are also extremely important, allowing the reduction of costs and time associated to extensive test programmes. Comparing with strap repairs, scarf repairs have the advantages of a higher efficiency and the absence of aerodynamic disturbance. This work reports on a numerical study of the tensile behaviour of three-dimensional scarf repairs in carbon-epoxy structures, using a ductile adhesive (Araldite® 2015). The finite elements analysis was performed in ABAQUS® and Cohesive Zone Modelling was used for the simulation of damage onset and growth in the adhesive layer. Trapezoidal cohesive laws in each pure mode were used to account for the ductility of the specific adhesive mentioned. A parametric study was performed on the repair width and scarf angle. The use of over-laminating plies covering the repaired region at the outer or both repair surfaces was also tested as an attempt to increase the repairs efficiency. The obtained results allowed the proposal of design principles for repairing composite structures.
Resumo:
Chitosan biocompatibility and biodegradability properties make this biopolymer promising for the development of advanced internal fixation devices for orthopedic applications. This work presents a detailed study on the production and characterization of three dimensional (3D) dense, non-porous, chitosan-based structures, with the ability to be processed in different shapes, and also with high strength and stiffness. Such features are crucial for the application of such 3D structures as bioabsorbable implantable devices. The influence of chitosan's molecular weight and the addition of one plasticizer (glycerol) on 3D dense chitosan-based products' biomechanical properties were explored. Several specimens were produced and in vitro studies were performed in order to assess the cytotoxicity of these specimens and their physical behavior throughout the enzymatic degradation experiments. The results point out that glycerol does not impact on cytotoxicity and has a high impact in improving mechanical properties, both elasticity and compressive strength. In addition, human mesenchymal stem/stromal cells (MSC) were used as an ex-vivo model to study cell adhesion and proliferation on these structures, showing promising results with fold increase values in total cell number similar to the ones obtained in standard cell culture flasks. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.