882 resultados para TERM TEMPORAL-CHANGES
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up. New for 2009 was the one-time inclusion of snapping turtle tissue as part of the Iowa RAFT sampling program.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006a). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans. The Iowa RAFT monitoring program incorporates three different types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of Iowans consuming fish. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish consuming Iowans. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish consuming Iowans.
Resumo:
Proton magnetic resonance spectroscopy (1H-MRS) has been used in a number of studies to noninvasively assess the temporal changes of lactate in the activated human brain. However, the results have not been consistent. The aim of the present study was to test the sensitivity of 1H-MRS during functional experiments at the highest magnetic field currently available for human studies (7 T). Stability and reproducibility of the measurements were evaluated from LCModel analysis of time series of spectra measured during a visual stimulation paradigm and by examination of the difference between spectra obtained at rest and during activation. The sensitivity threshold to detect concentration changes was 0.2 micromol/g for most of the quantified metabolites. The possible variations of metabolite concentrations during visual stimulation were within the same range (+/-0.2 micromol/g). In addition, the influence of a small line-narrowing effect due to the blood oxygenation level-dependent (BOLD) T2* changes on the estimated concentrations was simulated. Quantification of metabolites was, in general, not affected beyond 1% by line-width changes within 0.5 Hz.
Resumo:
Background Ancient DNA has revolutionized conservation genetic studies as it allows monitoring of the genetic variability of species through time and predicting the impact of ecosystems" threats on future population dynamics and viability. Meanwhile, the consequences of anthropogenic activities and climate change to island faunas, particularly seabirds, remain largely unknown. In this study, we examined temporal changes in the genetic diversity of a threatened seabird, the Cory"s shearwater (Calonectris borealis). Findings We analysed the mitochondrial DNA control region of ancient bone samples from the late-Holocene retrieved from the Canary archipelago (NE Atlantic) together with modern DNA sequences representative of the entire breeding range of the species. Our results show high levels of ancient genetic diversity in the Canaries comparable to that of the extant population. The temporal haplotype network further revealed rare but recurrent long-distance dispersal between ocean basins. The Bayesian demographic analyses reveal both regional and local population size expansion events, and this is in spite of the demographic decline experienced by the species over the last millennia. Conclusions Our findings suggest that population connectivity of the species has acted as a buffer of genetic losses and illustrate the use of ancient DNA to uncover such cryptic genetic events.
Resumo:
In birds, parents adjust their feeding behaviour according to breeding duties, which ultimately may lead to seasonal adjustments in nutritional physiology and hematology over the breeding season. Although avian physiology has been widely investigated in captivity, few studies have integrated individual changes in feeding and physiological ecology throughout the breeding season in wild birds. To study relationships between feeding ecology and nutritional ecophysiology in Cory"s shearwater Calonectris diomedea, we weighed and took blood samples from 28 males and 19 females during the pre-laying, egg-laying, incubation, hatching and chick-rearing periods of the breeding season. In addition, we fitted 6 birds with geolocators to track their foraging movements throughout the reproductive period. Thus, we examined individual changes in (1) nutritional condition (biochemistry metabolites); (2) oxygen carrying capacity (hematology); and (3) feeding areas and foraging effort (stable isotopes and foraging movements). Geolocators revealed a latitudinal shift in main feeding areas towards more southern and more neritic waters throughout the breeding season, which is consistent with the steady increase in δ13C signatures in the blood. Geolocators also showed a decrease in foraging effort from egg-laying to hatching, reflecting the activity decrease associated with incubation duties. Plasma metabolites, body mass and oxygen carrying capacity were associated with temporal changes in nutritional state and foraging effort in relation to recovery after migration, egg formation, fasting shifts during incubation and chick provisioning. This study shows that combining physiological and ecological approaches can help us understand the influence of breeding duties on feeding ecology and nutritional physiology in wild birds.
Resumo:
In animal psychology, the open-field (OF) test is a traditional method for studying different aspects of rodent behavior, with thigmotaxis (i.e., wallseeking behavior) being one of the best validated OF parameters employed to measure emotionality. The main purpose of the present study was to investigate the selection response in mice selectively bred for high and low levels of OF thigmotaxis (the HOFT and LOFT lines, respectively). The mice (N = 2048) were selected for 23 generations, resulting in bidirectional phenotypic divergence between the two lines; that is, the HOFT mice were more thigmotactic (i.e., more emotional) than the LOFT mice across the different generations. The origin of the line difference in thigmotaxis was further investigated by using the crossfostering paradigm, with the results suggesting that the divergence between the two lines was primarily innate in origin and not influenced by differing maternal behavior. The stability of the selection trait was examined by testing the animals at different ages as well as in varying conditions. The results indicated that the line difference in thigmotaxis was not affected by age at the time of testing, and it also persisted in the different OF testing situations as well as during pregnancy and lactation. The examination of a possible coselection of other characteristics revealed that the more thigmotactic HOFT mice lived longer than the less thigmotactic LOFT mice. In addition, the HOFT mice tended to rear and explore less than the LOFT mice, supporting the general assumption that emotionality and exploration are inversely related. The two lines did not generally differ in ambulation and defecation, that is, in the traditional OF indexes of emotionality, conforming to the suggestion that emotionality is a multidimensional construct. The effects of sex on different OF parameters were also assessed, with the results suggesting that among the HOFT and LOFT lines, the female mice were more emotional than the male mice. The examination of the temporal changes in the HOFT and LOFT lines’ OF behavior revealed some contradictory findings that also partially conflicted with general assumptions. Although this study did not show prominent differences in maternal responsiveness between the HOFT and LOFT mothers, the results suggested that the line divergence in emotionality was more pronounced in the presence of a pup after parturition than during pregnancy. The present study clearly demonstrates that OF thigmotaxis is a strong characteristic for producing two diverging lines of mice. The difference in thigmotaxis between the selectively bred HOFT and LOFT mice seemed to be a stable and robust feature of these animals, and it appeared to stem from a genetic background.
Resumo:
One of the main developments in the global economy during the past decades has been the growth of emerging economies. Projections for their long-term growth, changes in the investment climate, corporate transparency and demography point to an increasing role for these emerging economies in the global economy. Today, emerging economies are usually considered as financial markets offering opportunities for high returns, good risk diversification and improved return-to-risk ratios. However, researchers have noted that these advantages may be in decline because of the increasing market integration. Nevertheless, it is likely that certain financial markets and specific sectors will remain partially segmented and somewhat insulated from the global economy for the year to come. This doctoral dissertation investigates several stock markets in Emerging Eastern Europe (EEE), including the ones in Russia, Poland, Hungary, the Czech Republic, Bulgaria and Slovenia. The objective is to analyze the returns and financial risks in these emerging markets from international investor’s point of view. This study also examines the segmentation/integration of these financial markets and the possibilities to diversify and hedge financial risk. The dissertation is divided into two parts. The first includes a review of the theoretical background for the articles and a review of the literature on EEE stock markets. It includes an overview of the methodology and research design applied in the analysis and a summary of articles from the second part of this dissertation and their main findings. The second part consists of four research publications. This work contributes to studies on emerging stock markets in four ways. First, it adds to the body of research on the pricing of risk, providing new empirical evidence about partial stock market segmentation in EEE. The results suggest that the aggregate emerging market risk is a relevant driver for stock market returns and that this market risk can be used to price financial instruments and forecast their performance. Second, it contributes to the empirical research on the integration of stock markets, asset prices and exchange rates by identifying the relationships between these markets through volatility and asset pricing. The results show that certain sectors of stock markets in EEE are not as integrated as others. For example, the Polish consumer goods sector, the Hungarian telecommunications sector, and the Czech financial sector are somewhat isolated from their counterparts elsewhere in Europe. Nevertheless, an analysis of the impact of EU accession in 2004 on stock markets suggests that most of the EEE markets are becoming increasingly integrated with the global markets. Third, this thesis complements the scientific literature in the field of shock and volatility spillovers by examining the mechanism of spillover distribution among the EU and EEE countries. The results illustrate that spillovers in emerging markets are mostly from a foreign exchange to the stock markets. Moreover, the results show that the effects of external shocks on stock markets have increased after the enlargement of the EU in 2004. Finally, this study is unique because it analyzes the effects of foreign macroeconomic news on geographically closely related countries. The results suggest that the effects of macroeconomic announcements on volatility are significant and have effect that varies across markets and their sectors. Moreover, the results show that the foreign macroeconomic news releases, somewhat surprisingly, have a greater effect on the EEE markets than the local macroeconomic news. This dissertation has a number of implications for the industry and for practitioners. It analyses financial risk associated with investing in Emerging Eastern Europe. Investors may use this information to construct and optimize investment portfolios. Moreover, this dissertation provides insights for investors and portfolio managers considering asset allocation to protect value or obtain higher returns. The results have also implications for asset pricing and portfolio selection in light of macroeconomic news releases.
Resumo:
Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals.
Resumo:
This study was undertaken to ascertain whether meromictic lakes could be differentiated from holomictic lakes on the basis of their surficial profundal sediments. Surface sediment cores (15 cm long) were collected from both the littoral and profundal zones of four meromictic and six holomictic lakes and analyzed for total number of fossil chironomid headcapsu~es, chlorophyll and carotenoid degradation products as well as \ iron and manganese concentrations. Littoral and profundal comparisons of the surface sediments were made between the two lake types using the Mann-Whitney U test. Iron, manganese and the iron to manganese ratio in the littoral sediments of meromictic lakes were significantly lower than those found in the littoral sediments of holomictic lakes. The observed differences are believed to represent an artifact of the significantly higher carbonate concentrations found in three of the four meromictic lakes studied. Profundal and littoral to profundal ratio comparison between holomictic and meromictic lakes suggest that the significantly lower iron and higher carotenoid concentrations in meromictic profundal sediments were a con~equence of meromixis. However, the overlap in distribution exhibited by both iron and carotenoid degradation products between the two lake types was sufficiently large in this study to nullify their use as a means of differentiating meromictic from holomictic lakes. A long core (4.25 m) was removed from the deepest part of the meromictic Crawford Lake (Ontario), sectioned at 5 cm intervals, and analyzed to assess when meromixis occurred, based on its fossil record. Temporal changes in the total number of chironomid headcapsules, and chlorophyll and carotenoid sediment degradation products were closely correlated with organic matter, indicating in my opinion that extensive redeposition of littoral chironomid headcapsules in the profundal zone has occurred. Temporal variations in carotenoid degradation products, in response to changes in organic matter, obscured increased preservation that may have occurred as a consequence of meromixis. Temporal variations in iron and manganese suggest that relatively stable redox conditions have existed throughout most of the lake's history. Therefore it would appear that Crawford Lake has been meromictic since its inception.