963 resultados para System parameters
Resumo:
We investigate the design of electronic dispersion compensation (EDC) using full optical-field reconstruction in 10Gbit/s on-off keyed transmission systems limited by optical signal-to-noise ratio (OSNR). By effectively suppressing the impairment due to low- frequency component amplification in phase reconstruction, properly designing the transmission system configuration to combat fiber nonlinearity, and successfully reducing the vulnerability to thermal noise, a 4.8dB OSNR margin can be achieved for 2160km single-mode fiber transmission without any optical dispersion compensation. We also investigate the performance sensitivity of the scheme to various system parameters, and propose a novel method to greatly enhance the tolerance to differential phase misalignment of the asymmetric Mach-Zehnder interferometer. This numerical study provides important design guidelines which will enable full optical-field EDC to become a cost-effective dispersion compensation solution for future transparent optical networks.
Resumo:
We investigate full-field detection-based maximum-likelihood sequence estimation (MLSE) for chromatic dispersion compensation in 10 Gbit/s OOK optical communication systems. Important design criteria are identified to optimize the system performance. It is confirmed that approximately 50% improvement in transmission reach can be achieved compared to conventional direct-detection MLSE at both 4 and 16 states. It is also shown that full-field MLSE is more robust to the noise and the associated noise amplifications in full-field reconstruction, and consequently exhibits better tolerance to nonoptimized system parameters than full-field feedforward equalizer. Experiments over 124 km spans of field-installed single-mode fiber without optical dispersion compensation using full-field MLSE verify the theoretically predicted performance benefits.
Resumo:
We experimentally demonstrate the use of full-field electronic dispersion compensation (EDC) to achieve a bit error rate of 5 x 10(-5) at 22.3 dB optical signal-to-noise ratio for single-channel 10 Gbit/s on-off keyed signal after transmission over 496 km field-installed single-mode fibre with an amplifier spacing of 124 km. This performance is achieved by designing the EDC so as to avoid electronic amplification of the noise content of the signal during full-field reconstruction. We also investigate the tolerance of the system to key signal processing parameters, and numerically demonstrate that single-channel 2160 km single mode fibre transmission without in-line optical dispersion compensation can be achieved using this technique with 80 km amplifier spacing and optimized system parameters.
Resumo:
Pain is a ubiquitous yet highly variable experience. The psychophysiological and genetic factors responsible for this variability remain unresolved. We hypothesised the existence of distinct human pain clusters (PCs) composed of distinct psychophysiological and genetic profiles coupled with differences in the perception and the brain processing of pain. We studied 120 healthy subjects in whom the baseline personality and anxiety traits and the serotonin transporter-linked polymorphic region (5-HTTLPR) genotype were measured. Real-time autonomic nervous system parameters and serum cortisol were measured at baseline and after standardised visceral and somatic pain stimuli. Brain processing reactions to visceral pain were studied in 29 subjects using functional magnetic resonance imaging (fMRI). The reproducibility of the psychophysiological responses to pain was assessed at 1 year. In group analysis, visceral and somatic pain caused an expected increase in sympathetic and cortisol responses and activated the pain matrix according to fMRI studies. However, using cluster analysis, we found 2 reproducible PCs: at baseline, PC1 had higher neuroticism/anxiety scores (P ≤ 0.01); greater sympathetic tone (P < 0.05); and higher cortisol levels (P ≤ 0.001). During pain, less stimulus was tolerated (P ≤ 0.01), and there was an increase in parasympathetic tone (P ≤ 0.05). The 5-HTTLPR short allele was over-represented (P ≤ 0.005). PC2 had the converse profile at baseline and during pain. Brain activity differed (P ≤ 0.001); greater activity occurred in the left frontal cortex in PC1, whereas PC2 showed greater activity in the right medial/frontal cortex and right anterior insula. In health, 2 distinct reproducible PCs exist in humans. In the future, PC characterization may help to identify subjects at risk for developing chronic pain and may reduce variability in brain imaging studies. © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Many natural, technological and social systems are inherently not in equilibrium. We show, by detailed analysis of exemplar models, the emergence of equilibriumlike behavior in localized or nonlocalized domains within nonequilibrium Ising spin systems. Equilibrium domains are shown to emerge either abruptly or gradually depending on the system parameters and disappear, becoming indistinguishable from the remainder of the system for other parameter values. © 2013 American Physical Society.
Resumo:
The authors demonstrate dispersion managed soliton transmission using short-period dispersion management, which is characterised by having a dispersion management period that is much shorter than the amplification period. Simulation results indicate that by optimisation of the system parameters single channel transmission at 80Gbit/s is possible over trans-oceanic distances. © IEE, 2000.
Resumo:
Based on an assumption that a steady state exists in the full-memory multidestination automatic repeat request (ARQ) scheme, we propose a novel analytical method called steady-state function method (SSFM), to evaluate the performance of the scheme with any size of receiver buffer. For a wide range of system parameters, SSFM has higher accuracy on throughput estimation as compared to the conventional analytical methods.
Resumo:
Background: Despite chronic pain being a feature of functional chest pain (FCP) its experience is variable. The factors responsible for this variability remain unresolved. We aimed to address these knowledge gaps, hypothesizing that the psychophysiological profiles of FCP patients will be distinct from healthy subjects. Methods: 20 Rome III defined FCP patients (nine males, mean age 38.7 years, range 28-59 years) and 20 healthy age-, sex-, and ethnicity-matched controls (nine males, mean 38.2 years, range 24-49) had anxiety, depression, and personality traits measured. Subjects had sympathetic and parasympathetic nervous system parameters measured at baseline and continuously thereafter. Subjects received standardized somatic (nail bed pressure) and visceral (esophageal balloon distension) stimuli to pain tolerance. Venous blood was sampled for cortisol at baseline, post somatic pain and post visceral pain. Key Results: Patients had higher neuroticism, state and trait anxiety, and depression scores but lower extroversion scores vs controls (all p < 0.005). Patients tolerated less somatic (p < 0.0001) and visceral stimulus (p = 0.009) and had a higher cortisol at baseline, and following pain (all p < 0.001). At baseline, patients had a higher sympathetic tone (p = 0.04), whereas in response to pain they increased their parasympathetic tone (p ≤ 0.008). The amalgamating the data, we identified two psychophysiologically distinct 'pain clusters'. Patients were overrepresented in the cluster characterized by high neuroticism, trait anxiety, baseline cortisol, pain hypersensitivity, and parasympathetic response to pain (all p < 0.03). Conclusions & Inferences: In future, such delineations in FCP populations may facilitate individualization of treatment based on psychophysiological profiling. © 2013 John Wiley & Sons Ltd.
Resumo:
Numerical optimization is performed of the 40-Gb/s dispersion-managed (DM) soliton transmission system with in-line synchronous intensity modulation. Stability of DM soliton transmission results from a combined action of dispersion, nonlinearity, in-line filtering, and modulation through effective periodic bandwidth management of carrier pulses. Therefore, analysis of the multiparametric problem is typically required. A two-stage time-saving numerical optimization procedure is applied. At the first step, the regions of the stable carrier propagation are determined using theoretical models available for DM solitons, and system parameters are optimized. At the second stage, full numerical simulations are undertaken in order to verify the tolerance of optimal transmission regimes. An approach developed demonstrates feasibility of error-free transmission over 20 000 km in a transmission line composed of standard fiber and dispersion compensation fiber at 40 Gb/s.
Resumo:
This paper presents an adaptive method using genetic algorithm to modify user’s queries, based on relevance judgments. This algorithm was adapted for the three well-known documents collections (CISI, NLP and CACM). The method is shown to be applicable to large text collections, where more relevant documents are presented to users in the genetic modification. The algorithm shows the effects of applying GA to improve the effectiveness of queries in IR systems. Further studies are planned to adjust the system parameters to improve its effectiveness. The goal is to retrieve most relevant documents with less number of non-relevant documents with respect to user's query in information retrieval system using genetic algorithm.
Resumo:
In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.
Resumo:
We present comprehensive design rules to optimize the process of spectral compression arising from nonlinear pulse propagation in an optical fiber. Extensive numerical simulations are used to predict the performance characteristics of the process as well as to identify the optimal operational conditions within the space of system parameters. It is shown that the group velocity dispersion of the fiber is not detrimental and, in fact, helps achieve optimum compression. We also demonstrate that near-transform-limited rectangular and parabolic pulses can be generated in the region of optimum compression.
Resumo:
Recent theoretical investigations have demonstrated that the stability of mode-locked solutions of multiple frequency channels depends on the degree of inhomogeneity in gain saturation. In this article, these results are generalized to determine conditions on each of the system parameters necessary for both the stability and the existence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance between cubic gain and quintic loss, which is necessary for the existence of solutions as well. Furthermore, we determine the critical degree of inhomogeneous gain broadening required to support pulses in multiple-frequency channels. © 2010 The American Physical Society.
Resumo:
We investigate numerically the effect of ultralong Raman laser fiber amplifier design parameters, such as span length, pumping distribution and grating reflectivity, on the RIN transfer from the pump to the transmitted signal. Comparison is provided to the performance of traditional second-order Raman amplified schemes, showing a relative performance penalty for ultralong laser systems that gets smaller as span length increases. We show that careful choice of system parameters can be used to partially offset such penalty. © 2010 Optical Society of America.
Resumo:
This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.