974 resultados para Synthèse de ligand
Resumo:
Thermal fluctuation approach is widely used to monitor association kinetics of surface-bound receptor-ligand interactions. Various protocols such as sliding standard deviation (SD) analysis (SSA) and Page's test analysis (PTA) have been used to estimate two-dimensional (2D) kinetic rates from the time course of displacement of molecular carrier. In the current work, we compared the estimations from both SSA and modified PTA using measured data from an optical trap assay and simulated data from a random number generator. Our results indicated that both SSA and PTA were reliable in estimating 2D kinetic rates. Parametric analysis also demonstrated that such the estimations were sensitive to parameters such as sampling rate, sliding window size, and threshold. These results furthered the understandings in quantifying the biophysics of receptor-ligand interactions.
Resumo:
The anionic tripod ligand NaLoMe (L_(oMe) - = [(η^5-C_5H_5)Co{P(O)(OCH_3)_2}_3]^-) reacts with RuO_4 in a biphasic reaction mixture of 1% H_2SO_4 and CCI_4 to afford [(L_(oMe) (HO)Ru^(IV) (µ-O)_2Ru ^(IV)(OH)(L_(oMe)] (1), which is treated with aqueous CF_3S0_3H to generate [(L_(oMe)(H_2O)Ru^(IV) (µ-O)_2R^(IV) (OH_2)(L_(oMe)][CF_3SO_3]_2 ([H_21][CF_3SO_3]_2). Addition of iodosobenzene to an acetonitrile solution of this salt yields [(L_(oMe)(O)Ru^v(µ-0)2Ru^v-(O)(_(LoMe)] (2). The dimer 1 can be reduced chemically or electrochemically to the Ru^(III)- Ru^(III) dimers [(L_(oMe)(H_20)Ru^(III) (µ-OH)_2Ru^(III) (OH_2)(L_(oMe)) ]^2+ and [(L_(oMe)) ^(III) (µ-0Hh(µ-0H2)Ru^(III) (L_(oMe)]^2+ which interconvert in aqueous media. Two electron processes dominate both the bulk chemistry and the electrochemistry of 1. Among these processes are the quasi-reversible Ru^(IV) - Ru^(IV)/Ru^(III)- Ru^(III) and Ru^(III)- Ru^(III)/ Ru^(II)- Ru^(II) reductions and a largely irreversible Ru^(V) - Ru^(V)/ Ru^(IV) - Ru^(IV)/oxidation. The dioxo dimer 2 oxidizes alcohols and aldehydes in organic media to afford 1 and the corresponding aldehydes and acids. Analogously, the Ru^(V) - Ru^(V)/ Ru^(IV)- Ru^(IV) redox wave mediates the electrooxidation of alcohols and aldehydes in aqueous buffer. In this system, substrates can be oxidized completely to CO_2. The kinetic behavior of these oxidations was examined by UV-vis and chronoamperometry, respectively, and the chemistry is typical of metal-oxo complexes, indicating that electronic coupling between two metal centers does not dramatically affect the metal-oxo chemistry. Dimer [H_21]^(2+) also reacts with alcohols, aldehydes, and triphenylphosphine in CH_3CN to afford Ru^(III)- Ru^(III) products including [(L_(oMe))CH_3CN) Ru^(III) (µ-OH)_2 Ru^(III) (NCCH_3)( L_(oMe))][CF_3SO_3]2 (characterized by X-ray crystallography) and the corresponding organic products. Reaction of 1 with formaldehyde in aqueous buffer quantitatively affords the triply bridged dimer [(L_(oMe)Ru^(III) (µ-OH)2- (µ-HCOO) Ru^(III) (L_(oMe)][CF_3SO_3] (characterized by X-ray crystallography). This reaction evidently proceeds by two parallel inner-sphere pathways, one of which is autocatalytic. Neither pathway exhibits a primary isotope effect suggesting the rate determining process could be the formation of an intermediate, perhaps a Ru^(IV) - Ru^(IV) formate adduct. The Ru^(III)- Ru^(III)formate adduct is easily oxidized to the Ru^(IV) - Ru^(IV) analog [(L_(oMe)Ru^(IV)(µ-OH)_2-(µ-HCOO) Ru^(IV) (L_(oMe)][CF_3SO_3], which, after isolation, reacts slowly with aqueous formaldehyde to generate free formate and the Ru^(III)- Ru^(III) formate adduct. These dimers function as catalysts for the electrooxidation of formaldehyde at low anodic potentials (+0.0 V versus SCE in aqueous buffer, pH 8.5) and enhance the activity of Nafion treated palladium/carbon heterogeneous fuel cell catalysts.
Resumo:
This dissertation describes studies of G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LGICs) using unnatural amino acid mutagenesis to gain high precision insights into the function of these important membrane proteins.
Chapter 2 considers the functional role of highly conserved proline residues within the transmembrane helices of the D2 dopamine GPCR. Through mutagenesis employing unnatural α-hydroxy acids, proline analogs, and N-methyl amino acids, we find that lack of backbone hydrogen bond donor ability is important to proline function. At one proline site we additionally find that a substituent on the proline backbone N is important to receptor function.
In Chapter 3, side chain conformation is probed by mutagenesis of GPCRs and the muscle-type nAChR. Specific side chain rearrangements of highly conserved residues have been proposed to accompany activation of these receptors. These rearrangements were probed using conformationally-biased β-substituted analogs of Trp and Phe and unnatural stereoisomers of Thr and Ile. We also modeled the conformational bias of the unnatural Trp and Phe analogs employed.
Chapters 4 and 5 examine details of ligand binding to nAChRs. Chapter 4 describes a study investigating the importance of hydrogen bonds between ligands and the complementary face of muscle-type and α4β4 nAChRs. A hydrogen bond involving the agonist appears to be important for ligand binding in the muscle-type receptor but not the α4β4 receptor.
Chapter 5 describes a study characterizing the binding of varenicline, an actively prescribed smoking cessation therapeutic, to the α7 nAChR. Additionally, binding interactions to the complementary face of the α7 binding site were examined for a small panel of agonists. We identified side chains important for binding large agonists such as varenicline, but dispensable for binding the small agonist ACh.
Chapter 6 describes efforts to image nAChRs site-specifically modified with a fluorophore by unnatural amino acid mutagenesis. While progress was hampered by high levels of fluorescent background, improvements to sample preparation and alternative strategies for fluorophore incorporation are described.
Chapter 7 describes efforts toward a fluorescence assay for G protein association with a GPCR, with the ultimate goal of probing key protein-protein interactions along the G protein/receptor interface. A wide range of fluorescent protein fusions were generated, expressed in Xenopus oocytes, and evaluated for their ability to associate with each other.
Resumo:
Semisynthesis of horse heart cytochrome c and site-directed mutagenesis of Saccharomyces cerevisiae (S. c.) iso-1-cytochrome c have been utilized to substitute Ala for the cytochrome c heme axial ligand Met80 to yield ligand-binding proteins (horse heart Ala80cyt c and S.c. Ala80cyt c) with spectroscopic properties remarkably similar to those of myoglobin. Both species of Fe(II)Ala80cyt c form exceptionally stable dioxygen complexes with autoxidation rates 10-30x smaller and O2 binding constants ~ 3x greater than those of myoglobin. The resistance of O2-Fe(II)Ala80cyt c to autoxidation is attributed in part to protection of the heme site from solvent as exhibited by the exceptionally slow rate of CO binding to the heme as well as the low quantum yield of CO photodissociation.
UV/vis, EPR, and paramagnetic NMR spectroscopy indicate that at pH 7 the Fe(III)Ala80cyt c heme is low-spin with axial His-OH- coordination and that below pH ~6.5, Fe(III)Ala80cyt cis high-spin with His-H2O heme ligation. Significant differences in the pH dependence of the 1H NMR spectra of S.c. Fe(III)Ala80cyt c compared to wild-type demonstrate that the axial ligands influence the conformational energetics of cytochrome c.
1H NMR spectroscopy has been utilized to determine the solution structure of the cyanide derivative of S.c. Fe(III)Ala80cyt c. 82% of the resonances in the 1H NMR spectrum of S.c. CN-Fe(III)Ala80cyt c have been assigned through 1D and 2D experiments. The RMSD values after restrained energy minimization of the family of 17 structures obtained from distance geometry calculations are 0.68 ± 0.11 Å for the backbone and 1.32 ± 0.14 Å for all heavy atoms. The solution structure indicates that a tyrosine in the "distal" pocket of CN-Fe(III)Ala80cyt c forms a hydrogen bond with the Fe(III)-CN unit, suggesting that it may play a role analogous to that of the distal histidine in myoglobin in stabilizing the dioxygen adduct.
Resumo:
A series of Cs- and C1-symmetric doubly-linked ansa-metallocenes of the general formula {1,1'-SiMe2-2,2'-E-('ƞ5-C5H2-4-R1)-(ƞ5-C5H-3',5'-(CHMe2)2)}ZrC2 (E = SiMe2 (1), SiPh2 (2), SiMe2 -SiMe2 (3); R1 = H, CHMe2, C5H9, C6H11, C6H5) has been prepared. When activated by methylaluminoxane, these are active propylene polymerization catalysts. 1 and 2 produce syndiotactic polypropylenes, and 3 produces isotactic polypropylenes. Site epimerization is the major pathway for stereoerror formation for 1 and 2. In addition, the polymer chain has slightly stronger steric interaction with the diphenylsilylene linker than with the dimethylsilylene linker. This results in more frequent site epimerization and reduced syndiospecificity for 2 compared to 1.
C1-Symmetric ansa-zirconocenes [1,1 '-SiMe2-(C5H4)-(3-R-C5H3)]ZrCl2 (4), [1,1 '-SiMe2-(C5H4)-(2,4-R2-C5H2)]ZrCl2 (5) and [1,1 '-SiMe2-2,2 '-(SiMe2-SiMe2)-(C5H3)-( 4-R-C5H2)]ZrCl2 (6) have been prepared to probe the origin of isospecificity in 3. While 4 and 3 produce polymers with similar isospecificity, 5 and 6 give mostly hemi-isotactic-like polymers. It is proposed that the facile site epimerization via an associative pathway allows rapid equilibration of the polymer chain between the isospecific and aspecific insertion sites. This results in more frequent insertion from the isospecific site, which has a lower kinetic barrier for chain propagation. On the other hand, site epimerization for 5 and 6 is slow. This leads to mostly alternating insertion from the isospecific and aspecific sites, and consequently, a hemi-isotactic-like polymers. In comparison, site epimerization is even slower for 3, but enchainment from the aspecific site has an extremely high kinetic barrier for monomer coordination. Therefore, enchainment occurs preferentially from the isospecific site to produce isotactic polymers.
A series of cationic complexes [(ArN=CR-CR=NAr)PtMe(L)]+[BF4]+ (Ar = aryl; R = H, CH3; L = water, trifluoroethanol) has been prepared. They react smoothly with benzene at approximately room temperature in trifluoroethanol solvent to yield methane and the corresponding phenyl Pt(II) cations, via Pt(IV)-methyl-phenyl-hydride intermediates. The reaction products of methyl-substituted benzenes suggest an inherent reactivity preference for aromatic over benzylic C-H bond activation, which can however be overridden by steric effects. For the reaction of benzene with cationic Pt(II) complexes, in which the diimine ligands bear 3,5-disubstituted aryl groups at the nitrogen atoms, the rate-determining step is C-H bond activation. For the more sterically crowded analogs with 2,6-dimethyl-substituted aryl groups, benzene coordination becomes rate-determining. The more electron-rich the ligand, as reflected by the CO stretching frequency in the IR spectrum of the corresponding cationic carbonyl complex, the faster the rate of C-H bond activation. This finding, however, does not reflect the actual C-H bond activation process, but rather reflects only the relative ease of solvent molecules displacing water molecules to initiate the reaction. That is, the change in rates is mostly due to a ground state effect. Several lines of evidence suggest that associative substitution pathways operate to get the hydrocarbon substrate into, and out of, the coordination sphere; i.e., that benzene substitution proceeds by a solvent- (TFE-) assisted associative pathway.
Resumo:
This dissertation describes efforts to model biological active sites with small molecule clusters. The approach used took advantage of a multinucleating ligand to control the structure and nuclearity of the product complexes, allowing the study of many different homo- and heterometallic clusters. Chapter 2 describes the synthesis of the multinucleating hexapyridyl trialkoxy ligand used throughout this thesis and the synthesis of trinuclear first row transition metal complexes supported by this framework, with an emphasis on tricopper systems as models of biological multicopper oxidases. The magnetic susceptibility of these complexes were studied, and a linear relation was found between the Cu-O(alkoxide)-Cu angles and the antiferromagnetic coupling between copper centers. The triiron(II) and trizinc(II) complexes of the ligand were also isolated and structurally characterized.
Chapter 3 describes the synthesis of a series of heterometallic tetranuclear manganese dioxido complexes with various incorporated apical redox-inactive metal cations (M = Na+, Ca2+, Sr2+, Zn2+, Y3+). Chapter 4 presents the synthesis of heterometallic trimanganese(IV) tetraoxido complexes structurally related to the CaMn3 subsite of the oxygen-evolving complex (OEC) of Photosystem II. The reduction potentials of these complexes were studied, and it was found that each isostructural series displays a linear correlation between the reduction potentials and the Lewis acidities of the incorporated redox-inactive metals. The slopes of the plotted lines for both the dioxido and tetraoxido clusters are the same, suggesting a more general relationship between the electrochemical potentials of heterometallic manganese oxido clusters and their “spectator” cations. Additionally, these studies suggest that Ca2+ plays a role in modulating the redox potential of the OEC for water oxidation.
Chapter 5 presents studies of the effects of the redox-inactive metals on the reactivities of the heterometallic manganese complexes discussed in Chapters 3 and 4. Oxygen atom transfer from the clusters to phosphines is studied; although the reactivity is kinetically controlled in the tetraoxido clusters, the dioxido clusters with more Lewis acidic metal ions (Y3+ vs. Ca2+) appear to be more reactive. Investigations of hydrogen atom transfer and electron transfer rates are also discussed.
Appendix A describes the synthesis, and metallation reactions of a new dinucleating bis(N-heterocyclic carbene)ligand framework. Dicopper(I) and dicobalt(II) complexes of this ligand were prepared and structurally characterized. A dinickel(I) dichloride complex was synthesized, reduced, and found to activate carbon dioxide. Appendix B describes preliminary efforts to desymmetrize the manganese oxido clusters via functionalization of the basal multinucleating ligand used in the preceding sections of this dissertation. Finally, Appendix C presents some partially characterized side products and unexpected structures that were isolated throughout the course of these studies.
Resumo:
The Notch signaling pathway enables neighboring cells to coordinate developmental fates in diverse processes such as angiogenesis, neuronal differentiation, and immune system development. Although key components and interactions in the Notch pathway are known, it remains unclear how they work together to determine a cell's signaling state, defined as its quantitative ability to send and receive signals using particular Notch receptors and ligands. Recent work suggests that several aspects of the system can lead to complex signaling behaviors: First, receptors and ligands interact in two distinct ways, inhibiting each other in the same cell (in cis) while productively interacting between cells (in trans) to signal. The ability of a cell to send or receive signals depends strongly on both types of interactions. Second, mammals have multiple types of receptors and ligands, which interact with different strengths, and are frequently co-expressed in natural systems. Third, the three mammalian Fringe proteins can modify receptor-ligand interaction strengths in distinct and ligand-specific ways. Consequently, cells can exhibit non-intuitive signaling states even with relatively few components.
In order to understand what signaling states occur in natural processes, and what types of signaling behaviors they enable, this thesis puts forward a quantitative and predictive model of how the Notch signaling state is determined by the expression levels of receptors, ligands, and Fringe proteins. To specify the parameters of the model, we constructed a set of cell lines that allow control of ligand and Fringe expression level, and readout of the resulting Notch activity. We subjected these cell lines to an assay to quantitatively assess the levels of Notch ligands and receptors on the surface of individual cells. We further analyzed the dependence of these interactions on the level and type of Fringe expression. We developed a mathematical modeling framework that uses these data to predict the signaling states of individual cells from component expression levels. These methods allow us to reconstitute and analyze a diverse set of Notch signaling configurations from the bottom up, and provide a comprehensive view of the signaling repertoire of this major signaling pathway.
Resumo:
This dissertation focuses on the incorporation of non-innocent or multifunctional moieties into different ligand scaffolds to support one or multiple metal centers in close proximity. Chapter 2 focuses on the initial efforts to synthesize hetero- or homometallic tri- or dinuclear metal carbonyl complexes supported by para-terphenyl diphosphine ligands. A series of [M2M’(CO)4]-type clusters (M = Ni, Pd; M’ = Fe, Co) could be accessed and used to relate the metal composition to the properties of the complexes. During these studies it was also found that non-innocent behavior was observed in dinuclear Fe complexes that result from changes in oxidation state of the cluster. These studies led to efforts to rationally incorporate central arene moieties capable managing both protons and electrons during small molecule activation.
Chapter 3 discusses the synthesis of metal complexes supported by a novel para-terphenyl diphosphine ligand containing a non-innocent 1,4-hydroquinone moiety as the central arene. A Pd0-hydroquinone complex was found to mediate the activation of a variety of small molecules to form the corresponding Pd0-quinone complexes in a formal two proton ⁄ two electron transformation. Mechanistic investigations of dioxygen activation revealed a metal-first activation process followed by subsequent proton and electron transfer from the ligand. These studies revealed the capacity of the central arene substituent to serve as a reservoir for a formal equivalent of dihydrogen, although the stability of the M-quinone compounds prevented access to the PdII-quinone oxidation state, thus hindering of small molecule transformations requiring more than two electrons per equivalent of metal complex.
Chapter 4 discusses the synthesis of metal complexes supported by a ligand containing a 3,5-substituted pyridine moiety as the linker separating the phenylene phosphine donors. Nickel and palladium complexes supported by this ligand were found to tolerate a wide variety of pyridine nitrogen-coordinated electrophiles which were found to alter central pyridine electronics, and therefore metal-pyridine π-system interactions, substantially. Furthermore, nickel complexes supported by this ligand were found to activate H-B and H-Si bonds and formally hydroborate and hydrosilylate the central pyridine ring. These systems highlight the potential use of pyridine π-system-coordinated metal complexes to reversibly store reducing equivalents within the ligand framework in a manner akin to the previously discussed 1,4-hydroquinone diphosphine ligand scaffold.
Chapter 5 departs from the phosphine-based chemistry and instead focuses on the incorporation of hydrogen bonding networks into the secondary coordination sphere of [Fe4(μ4-O)]-type clusters supported by various pyrazolate ligands. The aim of this project is to stabilize reactive oxygenic species, such as oxos, to study their spectroscopy and reactivity in the context of complicated multimetallic clusters. Herein is reported this synthesis and electrochemical and Mössbauer characterization of a series of chloride clusters have been synthesized using parent pyrazolate and a 3-aminophenyl substituted pyrazolate ligand. Efforts to rationally access hydroxo and oxo clusters from these chloride precursors represents ongoing work that will continue in the group.
Appendix A discusses attempts to access [Fe3Ni]-type clusters as models of the enzymatic active site of [NiFe] carbon monoxide dehydrogenase. Efforts to construct tetranuclear clusters with an interstitial sulfide proved unsuccessful, although a (μ3-S) ligand could be installed through non-oxidative routes into triiron clusters. While [Fe3Ni(μ4-O)]-type clusters could be assembled, accessing an open heterobimetallic edge site proved challenging, thus prohibiting efforts to study chemical transformations, such as hydroxide attack onto carbon monoxide or carbon dioxide coordination, relevant to the native enzyme. Appendix B discusses the attempts to synthesize models of the full H-cluster of [FeFe]-hydrogenase using a bioinorganic approach. A synthetic peptide containing three cysteine donors was successfully synthesized and found to chelate a preformed synthetic [Fe4S4] cluster. However, efforts to incorporate the diiron subsite model complex proved challenging as the planned thioester exchange reaction was found to non-selectively acetylate the peptide backbone, thus preventing the construction of the full six-iron cluster.
Resumo:
Chronic diseases of the central nervous system are poorly treated due to the inability of most therapeutics to cross the blood-brain barrier. The blood-brain barrier is an anatomical and physiological barrier that severely restricts solute influx, including most drugs, from the blood to the brain. One promising method to overcome this obstacle is to use endogenous solute influx systems at the blood-brain barrier to transport drugs. Therapeutics designed to enter the brain through transcytosis by binding the transferrin receptor, however, are restricted within endothelial cells. The focus of this work was to develop a method to increase uptake of transferrin-containing nanoparticles into the brain by overcoming these restrictive processes.
To accomplish this goal, nanoparticles were prepared with surface transferrin molecules bound through various liable chemical bonds. These nanoparticles were designed to shed the targeting molecule during transcytosis to allow increased accumulation of nanoparticles within the brain.
Transferrin was added to the surface of nanoparticles through either redox or pH sensitive chemistry. First, nanoparticles with transferrin bound through disulfide bonds were prepared. These nanoparticles showed decreased avidity for the transferrin receptor after exposure to reducing agents and increased ability to enter the brain in vivo compared to those lacking the disulfide link.
Next, transferrin was attached through a chemical bond that cleaves at mildly acidic pH. Nanoparticles containing a cleavable link between transferrin and gold nanoparticle cores were found to both cross an in vitro model of the blood-brain barrier and accumulate within the brain in significantly higher numbers than similar nanoparticles lacking the cleavable bond. Also, this increased accumulation was not seen when using this same strategy with an antibody to transferrin receptor, indicating that behavior of nanoparticles at the blood-brain barrier varies depending on what type of targeting ligand is used.
Finally, polymeric nanoparticles loaded with dopamine and utilizing a superior acid-cleavable targeting chemistry were investigated as a potential treatment for Parkinson’s disease. These nanoparticles were capable of increasing dopamine quantities in the brains of healthy mice, highlighting the therapeutic potential of this design. Overall, this work describes a novel method to increase targeted nanoparticle accumulation in the brain.
Resumo:
Two kinds of nickel(II) and copper(II) P-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The present document represents a synthesis of the scientific knowledge gathered by the CRO in the years 1985-1990, and related to the proliferation of aquatic macrophytes, commonly called floating aquatic weeds, in the Ebrié lagoon.
Resumo:
Divergence of proteins in signaling pathways requires ligand and receptor coevolution to maintain or improve binding affinity and/or specificity. In this paper we show a clear case of coevolution between the prolactin (PRL) gene and its receptor (prolactin receptor, PRLR) in mammals. First we observed episodic evolution of the extracellular and intracellular domains of the PRLR, which is closely consistent with that seen in PRL. Correlated evolution was demonstrated both between PRL and its receptor and between the two domains of the PRLR using Pearson's correlation coefficient. On comparing the ratio of the nonsynonymous substitution rate to synonymous substitution rate (omega=d(N)/d(S)) for each branch of the star phylogeny of mammalian PRLRs, separately for the extracellular domain (ECD) and the transmembrane domain/intracellular domain (TMD/ICD), we observed a lower omega ratio for ECD than TMD/ICD along those branches leading to pig, dog and rabbit but a higher ratio for ECD than TMD/ICD on the branches leading to primates, rodents and ruminants, on which bursts of rapid evolution were observed. These observations can be best explained by coevolution between PRL and its receptor and between the two domains of the PRLR.
Resumo:
Eu(III), the last piece in the puzzle: Europium-induced self-assembly of ligands having a C(3)-symmetrical benzene-1,3,5-tricarboxamide core results in the formation of luminescent gels. Supramolecular polymers are formed through hydrogen bonding between the ligands. The polymers are then brought together into the gel assembly through the coordination of terpyridine ends by Eu(III) ions (blue dashed arrow: distance between two ligands in the strand direction).