903 resultados para Synchronization algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four hybrid algorithms has been developed for the solution of the unit commitment problem. They use simulated annealing as one of the constituent techniques, and produce lower cost schedules; two of them have less overhead than other soft computing techniques. They are also more robust to the choice of parameters. A special technique avoids the generating of infeasible schedules, and thus reduces computation time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose two algorithms for Q-learning that use the two-timescale stochastic approximation methodology. The first of these updates Q-values of all feasible state–action pairs at each instant while the second updates Q-values of states with actions chosen according to the ‘current’ randomized policy updates. A proof of convergence of the algorithms is shown. Finally, numerical experiments using the proposed algorithms on an application of routing in communication networks are presented on a few different settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Next generation wireless systems employ Orthogonal frequency division multiplexing (OFDM) physical layer owing to the high data rate transmissions that are possible without increase in bandwidth. While TCP performance has been extensively studied for interaction with link layer ARQ, little attention has been given to the interaction of TCP with MAC layer. In this work, we explore cross-layer interactions in an OFDM based wireless system, specifically focusing on channel-aware resource allocation strategies at the MAC layer and its impact on TCP congestion control. Both efficiency and fairness oriented MAC resource allocation strategies were designed for evaluating the performance of TCP. The former schemes try to exploit the channel diversity to maximize the system throughput, while the latter schemes try to provide a fair resource allocation over sufficiently long time duration. From a TCP goodput standpoint, we show that the class of MAC algorithms that incorporate a fairness metric and consider the backlog outperform the channel diversity exploiting schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of computing an approximate minimum cycle basis of an undirected edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time 0(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time 0(n(3+2/k)), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega)) bound. We also present a 2-approximation algorithm with O(m(omega) root n log n) expected running time, a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their non-stationarity, finite-horizon Markov decision processes (FH-MDPs) have one probability transition matrix per stage. Thus the curse of dimensionality affects FH-MDPs more severely than infinite-horizon MDPs. We propose two parametrized 'actor-critic' algorithms to compute optimal policies for FH-MDPs. Both algorithms use the two-timescale stochastic approximation technique, thus simultaneously performing gradient search in the parametrized policy space (the 'actor') on a slower timescale and learning the policy gradient (the 'critic') via a faster recursion. This is in contrast to methods where critic recursions learn the cost-to-go proper. We show w.p 1 convergence to a set with the necessary condition for constrained optima. The proposed parameterization is for FHMDPs with compact action sets, although certain exceptions can be handled. Further, a third algorithm for stochastic control of stopping time processes is presented. We explain why current policy evaluation methods do not work as critic to the proposed actor recursion. Simulation results from flow-control in communication networks attest to the performance advantages of all three algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A system of many coupled oscillators on a network can show multicluster synchronization. We obtain existence conditions and stability bounds for such a multicluster synchronization. When the oscillators are identical, we obtain the interesting result that network structure alone can cause multicluster synchronization to emerge even when all the other parameters are the same. We also study occurrence of multicluster synchronization when two different types of oscillators are coupled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relay selection for cooperative communications promises significant performance improvements, and is, therefore, attracting considerable attention. While several criteria have been proposed for selecting one or more relays, distributed mechanisms that perform the selection have received relatively less attention. In this paper, we develop a novel, yet simple, asymptotic analysis of a splitting-based multiple access selection algorithm to find the single best relay. The analysis leads to simpler and alternate expressions for the average number of slots required to find the best user. By introducing a new contention load' parameter, the analysis shows that the parameter settings used in the existing literature can be improved upon. New and simple bounds are also derived. Furthermore, we propose a new algorithm that addresses the general problem of selecting the best Q >= 1 relays, and analyze and optimize it. Even for a large number of relays, the scalable algorithm selects the best two relays within 4.406 slots and the best three within 6.491 slots, on average. We also propose a new and simple scheme for the practically relevant case of discrete metrics. Altogether, our results develop a unifying perspective about the general problem of distributed selection in cooperative systems and several other multi-node systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a self Adaptive Migration Model for Genetic Algorithms, where parameters of population size, the number of points of crossover and mutation rate for each population are fixed adaptively. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions, when compared with Island model GA(IGA) and Simple GA(SGA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a self Adaptive Migration Model for Genetic Algorithms, where parameters of population size, the number of points of crossover and mutation rate for each population are fixed adaptively. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions, when compared with Island model GA(IGA) and Simple GA(SGA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of resolving ambiguities in frequently confused online Tamil character pairs by employing script specific algorithms as a post classification step. Robust structural cues and temporal information of the preprocessed character are extensively utilized in the design of these algorithms. The methods are quite robust in automatically extracting the discriminative sub-strokes of confused characters for further analysis. Experimental validation on the IWFHR Database indicates error rates of less than 3 % for the confused characters. Thus, these post processing steps have a good potential to improve the performance of online Tamil handwritten character recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present two new filtered backprojection (FBP) type algorithms for cylindrical detector helical cone-beam geometry with no position dependent backprojection weight. The algorithms are extension of the recent exact Hilbert filtering based 2D divergent beam reconstruction with no backprojection weight to the FDK type algorithm for reconstruction in 3D helical trajectory cone-beam tomography. The two algorithms named HFDK-W1 and HFDK-W2 result in better image quality, noise uniformity, lower noise and reduced cone-beam artifacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grover's database search algorithm, although discovered in the context of quantum computation, can be implemented using any physical system that allows superposition of states. A physical realization of this algorithm is described using coupled simple harmonic oscillators, which can be exactly solved in both classical and quantum domains. Classical wave algorithms are far more stable against decoherence compared to their quantum counterparts. In addition to providing convenient demonstration models, they may have a role in practical situations, such as catalysis.