948 resultados para Symbolic Computations
Resumo:
The results of an investigation on the limits of the random errors contained in the basic data of Physical Oceanography and their propagation through the computational procedures are presented in this thesis. It also suggest a method which increases the reliability of the derived results. The thesis is presented in eight chapters including the introductory chapter. Chapter 2 discusses the general theory of errors that are relevant in the context of the propagation of errors in Physical Oceanographic computations. The error components contained in the independent oceanographic variables namely, temperature, salinity and depth are deliniated and quantified in chapter 3. Chapter 4 discusses and derives the magnitude of errors in the computation of the dependent oceanographic variables, density in situ, gt, specific volume and specific volume anomaly, due to the propagation of errors contained in the independent oceanographic variables. The errors propagated into the computed values of the derived quantities namely, dynamic depth and relative currents, have been estimated and presented chapter 5. Chapter 6 reviews the existing methods for the identification of level of no motion and suggests a method for the identification of a reliable zero reference level. Chapter 7 discusses the available methods for the extension of the zero reference level into shallow regions of the oceans and suggests a new method which is more reliable. A procedure of graphical smoothening of dynamic topographies between the error limits to provide more reliable results is also suggested in this chapter. Chapter 8 deals with the computation of the geostrophic current from these smoothened values of dynamic heights, with reference to the selected zero reference level. The summary and conclusion are also presented in this chapter.
Resumo:
Let G be finite group and K a number field or a p-adic field with ring of integers O_K. In the first part of the manuscript we present an algorithm that computes the relative algebraic K-group K_0(O_K[G],K) as an abstract abelian group. We solve the discrete logarithm problem, both in K_0(O_K[G],K) and the locally free class group cl(O_K[G]). All algorithms have been implemented in MAGMA for the case K = \IQ. In the second part of the manuscript we prove formulae for the torsion subgroup of K_0(\IZ[G],\IQ) for large classes of dihedral and quaternion groups.
Resumo:
The identification of chemical mechanism that can exhibit oscillatory phenomena in reaction networks are currently of intense interest. In particular, the parametric question of the existence of Hopf bifurcations has gained increasing popularity due to its relation to the oscillatory behavior around the fixed points. However, the detection of oscillations in high-dimensional systems and systems with constraints by the available symbolic methods has proven to be difficult. The development of new efficient methods are therefore required to tackle the complexity caused by the high-dimensionality and non-linearity of these systems. In this thesis, we mainly present efficient algorithmic methods to detect Hopf bifurcation fixed points in (bio)-chemical reaction networks with symbolic rate constants, thereby yielding information about their oscillatory behavior of the networks. The methods use the representations of the systems on convex coordinates that arise from stoichiometric network analysis. One of the methods called HoCoQ reduces the problem of determining the existence of Hopf bifurcation fixed points to a first-order formula over the ordered field of the reals that can then be solved using computational-logic packages. The second method called HoCaT uses ideas from tropical geometry to formulate a more efficient method that is incomplete in theory but worked very well for the attempted high-dimensional models involving more than 20 chemical species. The instability of reaction networks may lead to the oscillatory behaviour. Therefore, we investigate some criterions for their stability using convex coordinates and quantifier elimination techniques. We also study Muldowney's extension of the classical Bendixson-Dulac criterion for excluding periodic orbits to higher dimensions for polynomial vector fields and we discuss the use of simple conservation constraints and the use of parametric constraints for describing simple convex polytopes on which periodic orbits can be excluded by Muldowney's criteria. All developed algorithms have been integrated into a common software framework called PoCaB (platform to explore bio- chemical reaction networks by algebraic methods) allowing for automated computation workflows from the problem descriptions. PoCaB also contains a database for the algebraic entities computed from the models of chemical reaction networks.
Resumo:
Es ist allgemein bekannt, dass sich zwei gegebene Systeme spezieller Funktionen durch Angabe einer Rekursionsgleichung und entsprechend vieler Anfangswerte identifizieren lassen, denn computeralgebraisch betrachtet hat man damit eine Normalform vorliegen. Daher hat sich die interessante Forschungsfrage ergeben, Funktionensysteme zu identifizieren, die über ihre Rodriguesformel gegeben sind. Zieht man den in den 1990er Jahren gefundenen Zeilberger-Algorithmus für holonome Funktionenfamilien hinzu, kann die Rodriguesformel algorithmisch in eine Rekursionsgleichung überführt werden. Falls die Funktionenfamilie überdies hypergeometrisch ist, sogar laufzeiteffizient. Um den Zeilberger-Algorithmus überhaupt anwenden zu können, muss es gelingen, die Rodriguesformel in eine Summe umzuwandeln. Die vorliegende Arbeit beschreibt die Umwandlung einer Rodriguesformel in die genannte Normalform für den kontinuierlichen, den diskreten sowie den q-diskreten Fall vollständig. Das in Almkvist und Zeilberger (1990) angegebene Vorgehen im kontinuierlichen Fall, wo die in der Rodriguesformel auftauchende n-te Ableitung über die Cauchysche Integralformel in ein komplexes Integral überführt wird, zeigt sich im diskreten Fall nun dergestalt, dass die n-te Potenz des Vorwärtsdifferenzenoperators in eine Summenschreibweise überführt wird. Die Rekursionsgleichung aus dieser Summe zu generieren, ist dann mit dem diskreten Zeilberger-Algorithmus einfach. Im q-Fall wird dargestellt, wie Rekursionsgleichungen aus vier verschiedenen q-Rodriguesformeln gewonnen werden können, wobei zunächst die n-te Potenz der jeweiligen q-Operatoren in eine Summe überführt wird. Drei der vier Summenformeln waren bislang unbekannt. Sie wurden experimentell gefunden und per vollständiger Induktion bewiesen. Der q-Zeilberger-Algorithmus erzeugt anschließend aus diesen Summen die gewünschte Rekursionsgleichung. In der Praxis ist es sinnvoll, den schnellen Zeilberger-Algorithmus anzuwenden, der Rekursionsgleichungen für bestimmte Summen über hypergeometrische Terme ausgibt. Auf dieser Fassung des Algorithmus basierend wurden die Überlegungen in Maple realisiert. Es ist daher sinnvoll, dass alle hier aufgeführten Prozeduren, die aus kontinuierlichen, diskreten sowie q-diskreten Rodriguesformeln jeweils Rekursionsgleichungen erzeugen, an den hypergeometrischen Funktionenfamilien der klassischen orthogonalen Polynome, der klassischen diskreten orthogonalen Polynome und an der q-Hahn-Klasse des Askey-Wilson-Schemas vollständig getestet werden. Die Testergebnisse liegen tabellarisch vor. Ein bedeutendes Forschungsergebnis ist, dass mit der im q-Fall implementierten Prozedur zur Erzeugung einer Rekursionsgleichung aus der Rodriguesformel bewiesen werden konnte, dass die im Standardwerk von Koekoek/Lesky/Swarttouw(2010) angegebene Rodriguesformel der Stieltjes-Wigert-Polynome nicht korrekt ist. Die richtige Rodriguesformel wurde experimentell gefunden und mit den bereitgestellten Methoden bewiesen. Hervorzuheben bleibt, dass an Stelle von Rekursionsgleichungen analog Differential- bzw. Differenzengleichungen für die Identifikation erzeugt wurden. Wie gesagt gehört zu einer Normalform für eine holonome Funktionenfamilie die Angabe der Anfangswerte. Für den kontinuierlichen Fall wurden umfangreiche, in dieser Gestalt in der Literatur noch nie aufgeführte Anfangswertberechnungen vorgenommen. Im diskreten Fall musste für die Anfangswertberechnung zur Differenzengleichung der Petkovsek-van-Hoeij-Algorithmus hinzugezogen werden, um die hypergeometrischen Lösungen der resultierenden Rekursionsgleichungen zu bestimmen. Die Arbeit stellt zu Beginn den schnellen Zeilberger-Algorithmus in seiner kontinuierlichen, diskreten und q-diskreten Variante vor, der das Fundament für die weiteren Betrachtungen bildet. Dabei wird gebührend auf die Unterschiede zwischen q-Zeilberger-Algorithmus und diskretem Zeilberger-Algorithmus eingegangen. Bei der praktischen Umsetzung wird Bezug auf die in Maple umgesetzten Zeilberger-Implementationen aus Koepf(1998/2014) genommen. Die meisten der umgesetzten Prozeduren werden im Text dokumentiert. Somit wird ein vollständiges Paket an Algorithmen bereitgestellt, mit denen beispielsweise Formelsammlungen für hypergeometrische Funktionenfamilien überprüft werden können, deren Rodriguesformeln bekannt sind. Gleichzeitig kann in Zukunft für noch nicht erforschte hypergeometrische Funktionenklassen die beschreibende Rekursionsgleichung erzeugt werden, wenn die Rodriguesformel bekannt ist.
Resumo:
With the development of high-level languages for new computer architectures comes the need for appropriate debugging tools as well. One method for meeting this need would be to develop, from scratch, a symbolic debugger with the introduction of each new language implementation for any given architecture. This, however, seems to require unnecessary duplication of effort among developers. This paper describes Maygen, a "debugger generation system," designed to efficiently provide the desired language-dependent and architecture-dependent debuggers. A prototype of the Maygen system has been implemented and is able to handle the semantically different languages of C and OPAL.
Resumo:
The Kineticist's Workbench is a program that simulates chemical reaction mechanisms by predicting, generating, and interpreting numerical data. Prior to simulation, it analyzes a given mechanism to predict that mechanism's behavior; it then simulates the mechanism numerically; and afterward, it interprets and summarizes the data it has generated. In performing these tasks, the Workbench uses a variety of techniques: graph- theoretic algorithms (for analyzing mechanisms), traditional numerical simulation methods, and algorithms that examine simulation results and reinterpret them in qualitative terms. The Workbench thus serves as a prototype for a new class of scientific computational tools---tools that provide symbiotic collaborations between qualitative and quantitative methods.
Resumo:
In this work we have made significant contributions in three different areas of interest: therapeutic protein stabilization, thermodynamics of natural gas clathrate-hydrates, and zeolite catalysis. In all three fields, using our various computational techniques, we have been able to elucidate phenomena that are difficult or impossible to explain experimentally. More specifically, in mixed solvent systems for proteins we developed a statistical-mechanical method to model the thermodynamic effects of additives in molecular-level detail. It was the first method demonstrated to have truly predictive (no adjustable parameters) capability for real protein systems. We also describe a novel mechanism that slows protein association reactions, called the “gap effect.” We developed a comprehensive picture of methioine oxidation by hydrogen peroxide that allows for accurate prediction of protein oxidation and provides a rationale for developing strategies to control oxidation. The method of solvent accessible area (SAA) was shown not to correlate well with oxidation rates. A new property, averaged two-shell water coordination number (2SWCN) was identified and shown to correlate well with oxidation rates. Reference parameters for the van der Waals Platteeuw model of clathrate-hydrates were found for structure I and structure II. These reference parameters are independent of the potential form (unlike the commonly used parameters) and have been validated by calculating phase behavior and structural transitions for mixed hydrate systems. These calculations are validated with experimental data for both structures and for systems that undergo transitions from one structure to another. This is the first method of calculating hydrate thermodynamics to demonstrate predictive capability for phase equilibria, structural changes, and occupancy in pure and mixed hydrate systems. We have computed a new mechanism for the methanol coupling reaction to form ethanol and water in the zeolite chabazite. The mechanism at 400°C proceeds via stable intermediates of water, methane, and protonated formaldehyde.
Resumo:
The chess endgame is increasingly being seen through the lens of, and therefore effectively defined by, a data ‘model’ of itself. It is vital that such models are clearly faithful to the reality they purport to represent. This paper examines that issue and systems engineering responses to it, using the chess endgame as the exemplar scenario. A structured survey has been carried out of the intrinsic challenges and complexity of creating endgame data by reviewing the past pattern of errors during work in progress, surfacing in publications and occurring after the data was generated. Specific measures are proposed to counter observed classes of error-risk, including a preliminary survey of techniques for using state-of-the-art verification tools to generate EGTs that are correct by construction. The approach may be applied generically beyond the game domain.
Resumo:
We give a non-commutative generalization of classical symbolic coding in the presence of a synchronizing word. This is done by a scattering theoretical approach. Classically, the existence of a synchronizing word turns out to be equivalent to asymptotic completeness of the corresponding Markov process. A criterion for asymptotic completeness in general is provided by the regularity of an associated extended transition operator. Commutative and non-commutative examples are analysed.
Resumo:
Some scholars have read Virgil’s grafted tree (G. 2.78–82) as a sinister image, symptomatic of man’s perversion of nature. However, when it is placed within the long tradition of Roman accounts of grafting (in both prose and verse), it seems to reinforce a consistently positive view of the technique, its results, and its possibilities. Virgil’s treatment does represent a significant change from Republican to Imperial literature, whereby grafting went from mundane reality to utopian fantasy. This is reflected in responses to Virgil from Ovid, Columella, Calpurnius, Pliny the Elder, and Palladius (with Republican context from Cato, Varro, and Lucretius), and even in the postclassical transformation of Virgil’s biography into a magical folktale.