891 resultados para Suppression articulatoire
Resumo:
Prior research has led to the development of input command shapers that can reduce residual vibration in single- or multiple-mode flexible systems. We present a method for the development of multiple-mode shapers which are simpler to implement and produce smaller response delays than previous designs. An MIT / NASA experimental flexible structure, MACE, is employed as a test article for the validation of the new shaping method. We examine the results of tests conducted on simulations of MACE. The new shapers are shown to be effective in suppressing multiple-mode vibration, even in the presence of mild kinematic and dynamic non-linearities.
Resumo:
SCOPUS: cp.j
Resumo:
Ataxia telangiectasia mutant (ATM) is an S/T-Q-directed kinase that is critical for the cellular response to double-stranded breaks (DSBs) in DNA. Following DNA damage, ATM is activated and recruited by the MRN protein complex [meiotic recombination 11 (Mre11)/DNA repair protein Rad50/Nijmegen breakage syndrome 1 proteins] to sites of DNA damage where ATM phosphorylates multiple substrates to trigger cell-cycle arrest. In cancer cells, this regulation may be faulty, and cell division may proceed even in the presence of damaged DNA. We show here that the ribosomal s6 kinase (Rsk), often elevated in cancers, can suppress DSB-induced ATM activation in both Xenopus egg extracts and human tumor cell lines. In analyzing each step in ATM activation, we have found that Rsk targets loading of MRN complex components onto DNA at DSB sites. Rsk can phosphorylate the Mre11 protein directly at S676 both in vitro and in intact cells and thereby can inhibit the binding of Mre11 to DNA with DSBs. Accordingly, mutation of S676 to Ala can reverse inhibition of the response to DSBs by Rsk. Collectively, these data point to Mre11 as an important locus of Rsk-mediated checkpoint inhibition acting upstream of ATM activation.
Resumo:
Gemstone Team ANTIDOTE
Resumo:
Staphylococcal protein A (SpA) is an important virulence factor from Staphylococcus aureus responsible for the bacterium's evasion of the host immune system. SpA includes five small three-helix-bundle domains that can each bind with high affinity to many host proteins such as antibodies. The interaction between a SpA domain and the Fc fragment of IgG was partially elucidated previously in the crystal structure 1FC2. Although informative, the previous structure was not properly folded and left many substantial questions unanswered, such as a detailed description of the tertiary structure of SpA domains in complex with Fc and the structural changes that take place upon binding. Here we report the 2.3-Å structure of a fully folded SpA domain in complex with Fc. Our structure indicates that there are extensive structural rearrangements necessary for binding Fc, including a general reduction in SpA conformational heterogeneity, freezing out of polyrotameric interfacial residues, and displacement of a SpA side chain by an Fc side chain in a molecular-recognition pocket. Such a loss of conformational heterogeneity upon formation of the protein-protein interface may occur when SpA binds its multiple binding partners. Suppression of conformational heterogeneity may be an important structural paradigm in functionally plastic proteins.
Resumo:
The FIRE Detection and Suppression Simulation (FIREDASS) project was concerned with the development of water misting systems as a possible replacement for halon based fire suppression systems currently used in aircraft cargo holds and ship engine rooms. As part of this program of work, a computational model was developed to assist engineers optimize the design of water mist suppression systems. The model is based on Computational Fluid Dynamics (CFD) and comprised of the following components: fire model; mist model; two-phase radiation model; suppression model; detector/activation model. In this paper the FIREDASS software package is described and the theory behind the fire and radiation sub-models is detailed. The fire model uses prescribed release rates for heat and gaseous combustion products to represent the fire load. Typical release rates have been determined through experimentation. The radiation model is a six-flux model coupled to the gas (and mist) phase. As part of the FIREDASS project, a detailed series of fire experiments were conducted in order to validate the fire model. Model predictions are compared with data from these experiments and good agreement is found.
Resumo:
Aims: To determine whether routine outpatient monitoring of growth predicts adrenal suppression in prepubertal children treated with high dose inhaled glucocorticoid.
Methods: Observational study of 35 prepubertal children (aged 4–10 years) treated with at least 1000 µg/day of inhaled budesonide or equivalent potency glucocorticoid for at least six months. Main outcome measures were: changes in HtSDS over 6 and 12 month periods preceding adrenal function testing, and increment and peak cortisol after stimulation by low dose tetracosactrin test. Adrenal suppression was defined as a peak cortisol 500 nmol/l.
Results: The areas under the receiver operator characteristic curves for a decrease in HtSDS as a predictor of adrenal insufficiency 6 and 12 months prior to adrenal testing were 0.50 (SE 0.10) and 0.59 (SE 0.10). Prediction values of an HtSDS change of –0.5 for adrenal insufficiency at 12 months prior to testing were: sensitivity 13%, specificity 95%, and positive likelihood ratio of 2.4. Peak cortisol reached correlated poorly with change in HtSDS ( = 0.23, p = 0.19 at 6 months; = 0.33, p = 0.06 at 12 months).
Conclusions: Monitoring growth does not enable prediction of which children treated with high dose inhaled glucocorticoids are at risk of potentially serious adrenal suppression. Both growth and adrenal function should be monitored in patients on high dose inhaled glucocorticoids. Further research is required to determine the optimal frequency of monitoring adrenal function.
Resumo:
Digital avionics systems are increasingly under threat from external electromagnetic interference (EMI). The same avionics systems require a thermal cooling mechanism and one method of providing this is to mount an air vent on the body of the aircraft. For the first time, a nacelle-mounted air vent that may expose the flight critical full authority digital engine controller (FADEC) to high intensity radiated fields (HIRF) is examined. The reflection/transmission characteristics of the vent are reported and the current shielding method employed is shown to provide a low shielding level (5 dB at 18 GHz). A new design has been proposed, providing over 100 dB of attenuation at 18 GHz. To the authors' knowledge this is the first time this shielding method has been applied to aircraft air vents.
Resumo:
Novel technology dependent scaling parameters i.e. spacer to gradient ratio and effective channel length (Leff) are proposed for source/drain engineered DG MOSFET, and their significance in minimizing short channel effects (SCES) in high-k gate dielectrics is discussed in detail. Results show that a high-k dielectric should be associated with a higher spacer to gradient ratio to minimise SCEs The analytical model agrees with simulated data over the entire range of spacer widths, doping gradients, high-k gate dielectrics and effective channel lengths.
Resumo:
The interaction of an intense laser field with a beam of atomic ions has been investigated experimentally for the first time. The ionization dynamics of Ar+ ions and Ar neutrals in a 60 fs, 790 nm laser pulse have been compared and contrasted at intensities up to 10(16) W cm (-2). Our results show that nonsequential ionization from an Ar+ target is strongly suppressed compared with that from the corresponding neutral target. We have also observed for the first time the strong field ionization of high lying target metastable levels in the Ar+ beam.