977 resultados para Super Austenitic Stainless Steel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure and mechanical properties of sintered stainless steel powder, of composition AISI 420, have been measured. Ball-milled powder comprising nanoscale grains was sintered to bulk specimens by two alternative routes: hot-pressing and microlaser sintering. The laser-sintered alloy has a porosity of 6% and comprises a mixture of delta ferrite and tempered martensite, and the relative volume fraction varies along the axis of the specimen due to a thermal cycle that evolves with progressive deposition. In contrast, the hot-pressed alloy has a porosity of 0.7% and exhibits a martensitic lath structure with carbide particles at the boundaries of the prior austenite grains. These differences in microstructure lead to significant differences in mechanical properties. For example, the uniaxial tensile strength of the hot-pressed material is one-half of its compressive strength, due to void initiation at the carbide particles at the prior austenite grain boundaries. Nanoindentation measurements reveal a size effect in hardness and also reveal the sensitivity of hardness to the presence of mechanical polishing and electropolishing. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on an inexpensive, facile and industry viable carbon nanofibre catalyst activation process achieved by exposing stainless steel mesh to an electrolyzed metal etchant. The surface evolution of the catalyst islands combines low-rate electroplating and substrate dissolution. The plasma enhanced chemical vapour deposited carbon nanofibres had aspect-ratios > 150 and demonstrated excellent height and crystallographic uniformity with localised coverage. The nanofibres were well-aligned with spacing consistent with the field emission nearest neighbour electrostatic shielding criteria, without the need of any post-growth processing. Nanofibre inclusion significantly reduced the emission threshold field from 4.5 V/μm (native mesh) to 2.5 V/μm and increased the field enhancement factor to approximately 7000. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction phenomena of nanosecond Q-switched diode-pumped solid state (DPSS) laser using 355nm radiation with 0.2mm thick 316L stainless steel foil was investigated at incident laser fluence range of 19 - 82Jcm-2. The characterization study was performed with and without the use of assist gas by utilizing micro supersonic minimum length nozzles (MLN), specifically designed for air at inlet chamber pressure of 8bar. MLN ranged in throat diameters of 200μm, 300μm, and 500μm respectively. Average etch rate per pulse under the influence of three micro supersonic impinging jets, for both oxygen and air showed the average etch rate was reduced when high-speed gas jets were utilized, compared to that without any gas jets, but significant variation was noticed between different jet sizes. Highest etch rate and quality was achieved with the smallest diameter nozzle, suggesting that micro nozzles can produce a viable process route for micro laser cutting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of a porous coating on prosthetic components to encourage bone ingrowth is an important way of improving uncemented implant fixation. Enhanced fixation may be achieved by the use of porous magneto-active layers on the surface of prosthetic implants, which would deform elastically on application of a magnetic field, generating internal stresses within the in-growing bone. This approach requires a ferromagnetic material able to support osteoblast attachment, proliferation, differentiation, and mineralization. In this study, the human osteoblast responses to ferromagnetic 444 stainless steel networks were considered alongside those to nonmagnetic 316L (medical grade) stainless steel networks. While both networks had similar porosities, 444 networks were made from coarser fibers, resulting in larger inter-fiber spaces. The networks were analyzed for cell morphology, distribution, proliferation, and differentiation, extracellular matrix production and the formation of mineralized nodules. Cell culture was performed in both the presence of osteogenic supplements, to encourage cell differentiation, and in their absence. It was found that fiber size affected osteoblast morphology, cytoskeleton organization and proliferation at the early stages of culture. The larger inter-fiber spaces in the 444 networks resulted in better spatial distribution of the extracellular matrix. The addition of osteogenic supplements enhanced cell differentiation and reduced cell proliferation thereby preventing the differences in proliferation observed in the absence of osteogenic supplements. The results demonstrated that 444 networks elicited favorable responses from human osteoblasts, and thus show potential for use as magnetically active porous coatings for advanced bone implant applications. © 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-impact of projectiles on thin 304 stainless steel plates is investigated to assess the degradation of ballistic performance, and to characterise the inherent mechanisms. Assessment of ballistic degradation is by means of a double-impact of rigid spheres at the same site on a circular clamped plate. The limiting velocity of the second impact, will be altered by the velocity of the antecedent impact. Finite element analyses were used to elucidate experimental results and understand the underlying mechanisms that give rise to the performance degradation. The effect of strength and ductility on the single and multi-impact performance was also considered. The model captured the experimental results with excellent agreement. Moreover, the material parameters used within the model were exclusively obtained from published works with no fitting or calibration required. An attempt is made to quantify the elevation of the ballistic limit of thin plates by the dynamic mechanism of travelling hinges. Key conclusions: The multi-hit performance scales linearly with the single-hit performance; and strength is a significantly greater effector of increased ballistic limit than ductility, even at the expense of toughness. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to improve bone-implant bonding. This can, potentially, be achieved through the use of an implant coating composed of fibre networks. It is hypothesised that such an implant can achieve strong peri-prosthetic bone anchorage, when seeded with human mesenchymal stem cells (hMSCs). The materials employed were 444 and 316L stainless steel fibre networks of the same fibre volume fraction. The present work confirms that hMSCs are able to proliferate and differentiate towards the osteogenic lineage when seeded onto the fibre networks. Cellular viability, proliferation and metabolic activity were assessed and the results suggest higher proliferation rates when hMSC are seeded onto the 444 networks as compared to 316L. Cell distribution was found uniform across the seeded surfaces with 444 showing a somewhat higher infiltration depth. Copyright © Materials Research Society 2013.