979 resultados para Summer resorts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contemporary Latin

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summer Sprite for Orchestra was completed in December, 2004. The piece originated from a singular encounter with little angels at Chang-Kyung Palace, which is the oldest and the most beautiful palace in Korea, and where the kings of the Chosun Dynasty (1393-1897) lived. This encounter was in the summer of 2002. I certainly could not prove that those angels I met were real. Possibly they were the reflection of drops of water after a sudden shower on that summer day. However, I definitely remember that short, unforgettable, and mysterious moment and the angels' beautiful dance-like celebration. Summer Sprite is based on these special memories and the encounter with the little angels that summer. Summer Sprite consists of 3 movements: "Greeting," "Encounter," and "Celebration." These follow the course of my encounter with the little angels. In Summer Sprite, I wished to describe the image of the angels as well as the progression of greeting, encounter, and celebration with them. The moods that follow in Summer Sprite are by turns lyrical, poetic, fantastic, mysterious, and dream-like. In each movement, I describe the meeting of angels and composer through the use of the soloists -- violin (sometimes viola) and cello. As suggested by the subtitle of the first movement, "Greeting" portrays the moment when a surprised I met the angels. It begins with tam-tam, marimba, harp, and piano and sets a mysterious and dark mood. The second movement, "Encounter," is shorter than the first movement. This movement provides a more tranquil mood as well as more unique timbres resulting from the use of mutes and special instruments (English horn, harp, crotales, suspended cymbal, and celesta). The delicate expression of the percussion is particularly important in establishing the static mood of this movement . The last movement, °?Celebration,°± is bright and energetic. It is also the longest. Here, I require the most delicate changes of dynamics and tempo, the most vigorous harmonies, and the fastest rhythmic figures, as well as the most independent, lyrical, and poetic melodies. For bright orchestral tone color, I used various kinds of percussion such as timpani, xylophone, marimba, vibraphone, cymbals, side drum, tambourine, triangle, and bass drum. This last movement is divided rondo-like into five sections: The first (mm.1-3), second (mm.4 - rehearsal number 1), third (rehearsal numbers 2-4), fourth (rehearsal numbers 5-7), and fifth, (rehearsal numbers 8 -18). To sum up, Summer Sprite describes an unforgettable and mysterious moment in a my life. My intention was to portray this through a concerto-like framework. A model for this would be Brahms°Ø °?Double Concerto°± in A minor, op.102, in which the solo cello stands for my angel and the solo violin (sometimes solo viola) for me.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variability of summer precipitation in the southeastern United States is examined in this study using 60-yr (1948-2007) rainfall data. The Southeast summer rainfalls exhibited higher interannual variability with more intense summer droughts and anomalous wetness in the recent 30 years (1978-2007) than in the prior 30 years (1948-77). Such intensification of summer rainfall variability was consistent with a decrease of light (0.1-1 mm day-1) and medium (1-10 mm day-1) rainfall events during extremely dry summers and an increase of heavy (.10 mm day-1) rainfall events in extremely wet summers. Changes in rainfall variability were also accompanied by a southward shift of the region of maximum zonal wind variability at the jet stream level in the latter period. The covariability between the Southeast summer precipitation and sea surface temperatures (SSTs) is also analyzed using the singular value decomposition (SVD) method. It is shown that the increase of Southeast summer precipitation variability is primarily associated with a higher SST variability across the equatorial Atlantic and also SST warming in the Atlantic. © 2010 American Meteorological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the changes of the North Atlantic subtropical high (NASH) and its impact on summer precipitation over the southeastern (SE) United States using the 850-hPa geopotential height field in the National Centers forEnvironmental Prediction (NCEP) reanalysis, the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), long-term rainfall data, and Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) model simulations during the past six decades (1948-2007). The results show that the NASH in the last 30 yr has become more intense, and its western ridge has displaced westward with an enhanced meridional movement compared to the previous 30 yr. When the NASH moved closer to the continental United States in the three most recent decades, the effect of the NASH on the interannual variation of SE U.S. precipitation is enhanced through the ridge's north-south movement. The study's attribution analysis suggested that the changes of the NASH are mainly due to anthropogenic warming. In the twenty-first century with an increase of the atmospheric CO2 concentration, the center of the NASH would be intensified and the western ridge of the NASH would shift farther westward. These changes would increase the likelihood of both strong anomalously wet and dry summers over the SEUnited States in the future, as suggested by the IPCC AR4 models. © 2011 American Meteorological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014, Springer-Verlag Berlin Heidelberg.This study assesses the skill of advanced regional climate models (RCMs) in simulating southeastern United States (SE US) summer precipitation and explores the physical mechanisms responsible for the simulation skill at a process level. Analysis of the RCM output for the North American Regional Climate Change Assessment Program indicates that the RCM simulations of summer precipitation show the largest biases and a remarkable spread over the SE US compared to other regions in the contiguous US. The causes of such a spread are investigated by performing simulations using the Weather Research and Forecasting (WRF) model, a next-generation RCM developed by the US National Center for Atmospheric Research. The results show that the simulated biases in SE US summer precipitation are due mainly to the misrepresentation of the modeled North Atlantic subtropical high (NASH) western ridge. In the WRF simulations, the NASH western ridge shifts 7° northwestward when compared to that in the reanalysis ensemble, leading to a dry bias in the simulated summer precipitation according to the relationship between the NASH western ridge and summer precipitation over the southeast. Experiments utilizing the four dimensional data assimilation technique further suggest that the improved representation of the circulation patterns (i.e., wind fields) associated with the NASH western ridge substantially reduces the bias in the simulated SE US summer precipitation. Our analysis of circulation dynamics indicates that the NASH western ridge in the WRF simulations is significantly influenced by the simulated planetary boundary layer (PBL) processes over the Gulf of Mexico. Specifically, a decrease (increase) in the simulated PBL height tends to stabilize (destabilize) the lower troposphere over the Gulf of Mexico, and thus inhibits (favors) the onset and/or development of convection. Such changes in tropical convection induce a tropical–extratropical teleconnection pattern, which modulates the circulation along the NASH western ridge in the WRF simulations and contributes to the modeled precipitation biases over the SE US. In conclusion, our study demonstrates that the NASH western ridge is an important factor responsible for the RCM skill in simulating SE US summer precipitation. Furthermore, the improvements in the PBL parameterizations for the Gulf of Mexico might help advance RCM skill in representing the NASH western ridge circulation and summer precipitation over the SE US.