947 resultados para Sucrose Isomerase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To test the comparative effectiveness of 2 nonpharmacologic pain-relieving interventions administered alone or in combination across time for repeated heel sticks in preterm infants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitazoxanide (NTZ) and several NTZ-derivatives (thiazolides) have been shown to exhibit considerable anti-Neospora caninum tachyzoite activity in vitro. We coupled tizoxanide (TIZ), the deacetylated metabolite, to epoxy-agarose-resin and performed affinity chromatography with N. caninum tachyzoite extracts. Two main protein bands of 52 and 43kDa were isolated. The 52kDa protein was readily recognized by antibodies directed against NcPDI, and mass spectrometry confirmed its identity. Poly-histidine-tagged NcPDI-cDNA was expressed in Escherichia coli and recombinant NcPDI (recNcPDI) was purified by Co2+-affinity chromatography. By applying an enzyme assay based on the measurement of insulin crosslinking activity, recNcPDI exhibited properties reminiscent for PDIs, and its activity was impaired upon the addition of classical PDI inhibitors such as bacitracin (1-2mM), para-chloromercuribenzoic acid (0.1-1mM) and tocinoic acid (0.1-1mM). RecNcPDI-mediated insulin crosslinking was inhibited by NTZ (5-100 microM) in a dose-dependent manner. In addition, the enzymatic activity of recNcPDI was inhibited by those thiazolides that also affected parasite proliferation. Thus, thiazolides readily interfere with NcPDI, and possibly also with PDIs from other microorganisms susceptible to thiazolides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secondary metabolites play an important role in plant protection against biotic and abiotic stress. In Populus, phenolic glycosides (PGs) and condensed tannins (CTs) are two such groups of compounds derived from the common phenylpropanoid pathway. The basal levels and the inducibility of PGs and CTs depend on genetic as well as environmental factors, such as soil nitrogen (N) level. Carbohydrate allocation, transport and sink strength also affect PG and CT levels. A negative correlation between the levels of PGs and CTs was observed in several studies. However, the molecular mechanism underlying such relation is not known. We used a cell culture system to understand negative correlation of PGs and CTs. Under normal culture conditions, neither salicin nor higher-order PGs accumulated in cell cultures. Several factors, such as hormones, light, organelles and precursors were discussed in the context of aspen suspension cells’ inability to synthesize PGs. Salicin and its isomer, isosalicin, were detected in cell cultures fed with salicyl alcohol, salicylaldehyde and helicin. At higher levels (5 mM) of salicyl alcohol feeding, accumulation of salicins led to reduced CT production in the cells. Based on metabolic and gene expression data, the CT reduction in salicin-accumulating cells is partly a result of regulatory changes at the transcriptional level affecting carbon partitioning between growth processes, and phenylpropanoid CT biosynthesis. Based on molecular studies, the glycosyltransferases, GT1-2 and GT1-246, may function in glycosylation of simple phenolics, such as salicyl alcohol in cell cultures. The uptake of such glycosides into vacuole may be mediated to some extent by tonoplast localized multidrug-resistance associated protein transporters, PtMRP1 and PtMRP6. In Populus, sucrose is the common transported carbohydrate and its transport is possibly regulated by sucrose transporters (SUTs). SUTs are also capable of transporting simple PGs, such as salicin. Therefore, we characterized the SUT gene family in Populus and investigated, by transgenic analysis, the possible role of the most abundantly expressed member, PtSUT4, in PG-CT homeostasis using plants grown under varying nitrogen regimes. PtSUT4 transgenic plants were phenotypically similar to the wildtype plants except that the leaf area-to-stem volume ratio was higher for transgenic plants. In SUT4 transgenics, levels of non-structural carbohydrates, such as sucrose and starch, were altered in mature leaves. The levels of PGs and CTs were lower in green tissues of transgenic plants under N-replete, but were higher under N-depleted conditions, compared to the levels in wildtype plants. Based on our results, SUT4 partly regulates N-level dependent PG-CT homeostasis by differential carbohydrate allocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proton–sucrose symporter mediates the key transport step in the resource distribution system that allows many plants to function as multicellular organisms. In the results reported here, we identify sucrose as a signaling molecule in a previously undescribed signal-transduction pathway that regulates the symporter. Sucrose symporter activity declined in plasma membrane vesicles isolated from leaves fed exogenous sucrose via the xylem transpiration stream. Symporter activity dropped to 35–50% of water controls when the leaves were fed 100 mM sucrose and to 20–25% of controls with 250 mM sucrose. In contrast, alanine symporter and glucose transporter activities did not change in response to sucrose treatments. Decreased sucrose symporter activity was detectable after 8 h and reached a maximum by 24 h. Kinetic analysis of transport activity showed a decrease in Vmax. RNA gel blot analysis revealed a decrease in symporter message levels, suggesting a drop in transcriptional activity or a decrease in mRNA stability. Control experiments showed that these responses were not the result of changing osmotic conditions. Equal molar concentrations of hexoses did not elicit the response, and mannoheptulose, a hexokinase inhibitor, did not block the sucrose effect. These data are consistent with a sucrose-specific response pathway that is not mediated by hexokinase as the sugar sensor. Sucrose-dependent changes in the sucrose symporter were reversible, suggesting this sucrose-sensing pathway can modulate transport activity as a function of changing sucrose concentrations in the leaf. These results demonstrate the existence of a signaling pathway that can control assimilate partitioning at the level of phloem translocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a Hungarian family with triosephosphate isomerase (TPI) deficiency, two compound heterozygote brothers were found with the same severe decrease in TPI activity, but only one of them had the classical symptoms. In search for the pathogenesis of the differing phenotype of the same genotypic TPI deficiency, an increase in red cell membrane fluidity was found. There were roughly 100% and 30% more 16:0/20:4 and 18:0/20:4 diacyl-phosphatidylcholine species in erythrocytes from the two TPI-deficient brothers than in the probes from healthy controls. The activities of acethylcholinesterase and calmodulin induced Ca2+ ATPase were significantly enhanced in erythrocytes from the propositus as compared with those of the neurologically symptom-free brother and other members of the TPI-deficient family as well as to those from healthy controls. Both enzymes are crucially involved in the function of nerve cells. The observed differences in membrane fluidity and enzyme activities between the erythrocytes from the phenotypically differing TPI-deficient brothers underline the importance of investigations into the effect of biophysical changes in the lipid environment of the membrane proteins on the development of disseminated focal neurological disorders of unknown pathogenic origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the mechanism for sucrose-induced protein stabilization is important in many diverse fields, ranging from biochemistry and environmental physiology to pharmaceutical science. Timasheff and Lee [Lee, J. C. & Timasheff, S. N. (1981) J. Biol. Chem. 256, 7193–7201] have established that thermodynamic stabilization of proteins by sucrose is due to preferential exclusion of the sugar from the protein’s surface, which increases protein chemical potential. The current study measures the preferential exclusion of 1 M sucrose from a protein drug, recombinant interleukin 1 receptor antagonist (rhIL-1ra). It is proposed that the degree of preferential exclusion and increase in chemical potential are directly proportional to the protein surface area and that, hence, the system will favor the protein state with the smallest surface area. This mechanism explains the observed sucrose-induced restriction of rhIL-1ra conformational fluctuations, which were studied by hydrogen–deuterium exchange and cysteine reactivity measurements. Furthermore, infrared spectroscopy of rhlL-1ra suggested that a more ordered native conformation is induced by sucrose. Electron paramagnetic resonance spectroscopy demonstrated that in the presence of sucrose, spin-labeled cysteine 116 becomes more buried in the protein’s interior and that the hydrodynamic diameter of the protein is reduced. The preferential exclusion of sucrose from the protein and the resulting shift in the equilibrium between protein states toward the most compact conformation account for sucrose-induced effects on rhIL-1ra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional expression of homo-oligomeric α7 neuronal nicotinic and type 3 serotonin receptors is dependent on the activity of a cyclophilin. In this paper we demonstrate that the mechanism of cyclophilin action during functional homo-oligomeric receptor expression in Xenopus oocytes is distinct from the calcineurin-dependent immunosuppressive mechanism by showing that a nonimmunosuppressive analog of cyclosporin A (CsA), SDZ 211–811, reduces functional receptor expression to the same extent as CsA. The cytoplasmic subtype of cyclophilin, cyclophilin A (CyPA), appears to be required for functional receptor expression. This is because overexpression of CyPA and a CyPA mutant that is deficient in CsA binding activity reverses CsA-induced reduction in functional receptor expression. The mechanism of action of CyPA is likely to involve its prolyl isomerase activity because a mutant CyPA with a single amino acid substitution (arginine 55 to alanine) that is predicted to produce a 1000-fold attenuation in isomerase activity fails to reverse the cyclosporin A effect. Our data also suggest that CyPA does not form a stable complex with receptor subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allele frequency variation at the phosphoglucose isomerase (PGI) locus in Californian populations of the beetle Chrysomela aeneicollis suggests that PGI may be undergoing natural selection. We quantified (i) apparent Michaelis-Menten constant (Km) of fructose 6-phosphate at different temperatures and (ii) thermal stability for three common PGI genotypes (1–1, 1–4, and 4–4). We also measured air temperature (Ta) and beetle body temperature (Tb) in three montane drainages in the Sierra Nevada, California. Finally, we measured 70-kDa heat shock protein (Hsp70) expression in field-collected and laboratory-acclimated beetles. We found that PGI allele 1 predominated in the northernmost drainage, Rock Creek (RC), which was also significantly cooler than the southernmost drainage, Big Pine Creek (BPC), where PGI allele 4 predominated. Allele frequencies and air temperatures were intermediate in the middle drainage, Bishop Creek (BC). Differences among genotypes in Km (1–1 > 1–4 > 4–4) and thermal stability (4–4 > 1–4 > 1–1) followed a pattern consistent with temperature adaptation. In nature, Tb was closely related to Ta. Hsp70 expression in adult beetles decreased with elevation and differed among drainages (BPC > BC > RC). After laboratory acclimation (8 days, 20°C day, 4°C night) and heat shock (4 h, 28–36°C), Hsp70 expression was greater for RC than BPC beetles. In RC, field-collected beetles homozygous for PGI 1–1 had higher Hsp70 levels than heterozygotes or a 4–4 homozygote. These results reveal functional and physiological differences among PGI genotypes, which suggest that montane populations of this beetle are locally adapted to temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The C-terminal domain (CTD) of the large subunit of RNA polymerase II plays a role in transcription and RNA processing. Yeast ESS1, a peptidyl-prolyl cis/trans isomerase, is involved in RNA processing and can associate with the CTD. Using several types of assays we could not find any evidence of an effect of Pin1, the human homolog of ESS1, on transcription by RNA polymerase II in vitro or on the expression of a reporter gene in vivo. However, an inhibitor of Pin1, 5-hydroxy-1,4-naphthoquinone (juglone), blocked transcription by RNA polymerase II. Unlike N-ethylmaleimide, which inhibited all phases of transcription by RNA polymerase II, juglone disrupted the formation of functional preinitiation complexes by modifying sulfhydryl groups but did not have any significant effect on either initiation or elongation. Both RNA polymerases I and III, but not T7 RNA polymerase, were inhibited by juglone. The primary target of juglone has not been unambiguously identified, although a site on the polymerase itself is suggested by inhibition of RNA polymerase II during factor-independent transcription of single-stranded DNA. Because of its unique inhibitory properties juglone should prove useful in studying transcription in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthetic and metabolic acclimation to low growth temperatures were studied in Arabidopsis (Heynh.). Plants were grown at 23°C and then shifted to 5°C. We compared the leaves shifted to 5°C for 10 d and the new leaves developed at 5°C with the control leaves on plants that had been left at 23°C. Leaf development at 5°C resulted in the recovery of photosynthesis to rates comparable with those achieved by control leaves at 23°C. There was a shift in the partitioning of carbon from starch and toward sucrose (Suc) in leaves that developed at 5°C. The recovery of photosynthetic capacity and the redirection of carbon to Suc in these leaves were associated with coordinated increases in the activity of several Calvin-cycle enzymes, even larger increases in the activity of key enzymes for Suc biosynthesis, and an increase in the phosphate available for metabolism. Development of leaves at 5°C also led to an increase in cytoplasmic volume and a decrease in vacuolar volume, which may provide an important mechanism for increasing the enzymes and metabolites in cold-acclimated leaves. Understanding the mechanisms underlying such structural changes during leaf development in the cold could result in novel approaches to increasing plant yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We isolated a cDNA encoding a 568-amino acid, heat-stress-induced peptidyl prolyl isomerase belonging to the FK506-binding-protein (FKBP) family. The open reading frame encodes for a peptidyl prolyl isomerase that possesses three FKBP-12-like domains, a putative tetratricopeptide motif, and a calmodulin-binding domain. Specific antibodies showed that the open reading frame encodes a heat-induced 77-kD protein, the wheat FKBP77 (wFKBP77), which exhibits 84% identity with the wFKBP73 and 42% identity with the human FKBP59. Because of the high similarity in sequence to wFKBP73, wFKBP77 was designated as the heat-induced isoform. The wFKBP77 mRNA steady-state level was 14-fold higher at 37°C than at 25°C. The wFKBP77 transcript abundance was the highest in mature embryos that had imbibed and 2-d-old green shoots exposed to 37°C, and decreased to 6% in 6-d-old green shoots. The transcript level returned to the level detected at 25°C after recovery of the embryos for 90 min at 25°C. We compared wFKBP73 and wFKBP77 with the heat-shock proteins having cognate and heat-stress-induced counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand how sucrose (Suc) is transported from source leaves to developing tap roots of carrot (Daucus carota L.), we cloned two cDNAs (DcSUT1 and DcSUT2) for proteins with homologies to plant Suc/H+ symporters. The deduced polypeptide sequences are 52% identical and have 12 predicted membrane-spanning domains each. Transport activities were confirmed by expression of the clones in yeast cells. Both transporters had optimal activity below pH 5.0 and Michaelis constant values of 0.5 mm. Suc uptake was inhibited by protonophores, suggesting that Suc transport is linked to the proton electrochemical potential across the plasma membrane. DcSUT1 and DcSUT2 had markedly different expression patterns. Transcripts of DcSUT1 were found only in the green parts of plants, with highest levels in the lamina of source leaves, indicating that DcSUT1 is required for the loading of Suc into the phloem. In leaf lamina expression was diurnally regulated, suggesting that Suc export from the leaves is higher during the day than during the night. The mRNA of DcSUT2 was found mainly in sink organs, and no diurnal expression pattern was detected in the storage root. Here, expression was not restricted to the phloem but was much higher in storage parenchyma tissues of phloem and xylem. The close relationship of DcSUT2 with a Suc/H+ symporter from fava bean, which facilitates Suc uptake into the cotyledons of developing seeds, indicates that this carrot Suc transporter may be involved in loading Suc into storage parenchyma cells.