917 resultados para Strip Casting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate representation of the coupled effects between turbulent fluid flow with a free surface, heat transfer, solidification, and mold deformation has been shown to be necessary for the realistic prediction of several defects in castings and also for determining the final crystalline structure. A core component of the computational modeling of casting processes involves mold filling, which is the most computationally intensive aspect of casting simulation at the continuum level. Considering the complex geometries involved in shape casting, the evolution of the free surface, gas entrapment, and the entrainment of oxide layers into the casting make this a very challenging task in every respect. Despite well over 30 years of effort in developing algorithms, this is by no means a closed subject. In this article, we will review the full range of computational methods used, from unstructured finite-element (FE) and finite-volume (FV) methods through fully structured and block-structured approaches utilizing the cut-cell family of techniques to capture the geometric complexity inherent in shape casting. This discussion will include the challenges of generating rapid solutions on high-performance parallel cluster technology and how mold filling links in with the full spectrum of physics involved in shape casting. Finally, some indications as to novel techniques emerging now that can address genuinely arbitrarily complex geometries are briefly outlined and their advantages and disadvantages are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiAl castings are prone to various defects including bubbles entrained during the turbulent filling of moulds. The present research has exploited the principles of the Durville tilt casting technique to develop a novel process in which the Induction Skull Melting (ISM) of TiAl alloys in a vacuum chamber has been combined with controlled tilt pouring to achieve the tranquil transfer of the metal into a hot ceramic shell mould. Practical casting equipment has been developed to evaluate the feasibility of this process in parallel with the development of novel software to simulate and optimize it. The PHYSICA CFD code was used to simulate the filling, heat transfer and solidification during tilt pouring using a number of free surface modelling techniques, including the novel Counter Diffusion Method (CDM). In view of the limited superheat, particular attention was paid to the mould design to minimize heat loss and gas entrainment caused by interaction between the counter-flowing metal and gas streams. The model has been validated against real-time X-ray movies of the tilt casting of aluminium and against TiAl blade castings. Modelling has contributed to designing a mould to promote progressive filling of the casting and has led to the use of a parabolic tilting cycle to balance the competing requirements for rapid filling to minimize the loss of superheat and slow filling minimize the turbulence-induced defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper concerns the development and validation (using an oil/water system) of a finite volume computer model of the continuous casting process for steel flat products. The emphasis is on hydrodynamic aspects and in particular the dynamic behaviour of the metal/slag interface. Instability and wave action encourage the entrainment of inclusions into the melt affecting product quality. To track the interface between oil and water a new implicit algorithm was developed, called the Counter Diffusion Method. To prevent excessive damping, a time-filtered version of the k-e model, was found necessary, with appropriate density stratification terms representing interface turbulence damping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tilt-casting method is used to achieve tranquil filling of gamma-TiAl turbine blades. The reactive alloy is melted in a cold crucible using an induction coil and then the complete crucible-mould- running system assembly is rotated through 180degrees to transfer the metal into the mould. The induction current is ramped down gradually as the rotation starts and the mould is preheated to maintain superheat. The liquid metal then enters the mould and the gas within it (argon) escapes through the inlet aperture and through auxiliary vents. Solidification starts as soon the metal enters the mould and it is important to account for this effect to predict and prevent misruns. The rotation rate has to be controlled carefully to allow sufficient time for gas evacuation, but at the same time preserve superheat. This 3-phase system is modelled using the FV method, with a fast implicit numerical scheme used to capture the transient liquid free surface. The enthalpy method is used to model solidification and predict defects such as trapped bubbles, macro-porosity or surface connected porosity. Modeling is used to support an experimental program for the development of a production method for gamma-TiAl blades, with a target length of 40cm. The experiments provide validation for the model and the model in turn optimizes the tilt-casting process. The work is part of the EU project IMPRESS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite volume computer model of the continuous casting process for steel flat products has been developed. In this first stage, the model concentrates on the hydrodynamic aspects of the process and in particular the dynamic behavior of the metal/slag interface. The model was validated against experimental measurements obtained in a water model apparatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. Development of a material not needing vibration for compaction—i.e. selfcompacting concrete (SCC)—has successfully met the challenge and is now increasingly being used in routine practice. The key to the improvement of fresh concrete performance has been nanoscale tailoring of molecules for surface active admixtures, as well as improved understanding of particle packing and of the role of mineral surfaces in cementitious matrixes. Fundamental studies of rheological behaviour of cementitious particle suspensions were soon expanded to extensive innovation programmes incorporating applied research, site experiments, instrumented full scale applications supporting technology, standards and guides, information efforts as well as training programmes. The major impact of the introduction of SCC is connected to the production process. The choice and handling of constituents are modified as well as mix design, batching, mixing and transporting. The productivity is drastically improved through elimination of vibration compaction and process reorganisation. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, the technology is improving performance in terms of hardened material properties like surface quality, strength and durability.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: