928 resultados para Straw decomposition in no-tillage system
Resumo:
We monitored the movements of 45 adult Summer Flounder (Paralichthys dentatus) between June 2007 and July 2008 through the use of passive acoustic telemetry to elucidate migratory and within-estuary behaviors in a lagoon system of the southern mid-Atlantic Bight. Between 8 June and 10 October 2007, fish resided primarily in the deeper (>3 m) regions of the system and exhibited low levels of large-scale (100s of meters) activity. Mean residence time within this estuarine lagoon system was conservatively estimated to be 130 days (range: 18–223 days), which is 1.5 times longer than the residence time previously reported for Summer Flounder in a similar estuarine habitat ~250 km to the north. The majority of fish remained within the lagoon system until mid-October, although some fish dispersed earlier and some of them appeared to disperse temporarily (i.e., exited the system for at least 14 consecutive days before returning). Larger fish were more likely to disperse before mid-October than smaller fish and may have moved to other estuaries or the inner continental shelf. Fish that dispersed after mid-October were more likely to return to the lagoon system the following spring than were fish that dispersed before mid-October. In 2008, fish returned to the system between 7 February and 7 April. Dispersals and returns most closely followed seasonal changes in mean water temperature, but photoperiod and other factors also may have played a role in large-scale movements of Summer Flounder.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Time scales extracted from high-resolution proxy records and observations indicate that the spectrum of climate variability exhibits significant power in the range of decades to centuries superimposed on a red-noise continuum. The classical view of climate variability is based on the concept that observed fluctuations have their origin in periodic forcings on the same time scale. ... Instead, it is proposed that these fluctuations are linked to interactions within and between the different climate system components.
Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland
Resumo:
For minimizing cannibalism of African catfish (Clarias gariepinus) larvae two trials for a period of 14 and 15 days respectively in four aquaria of size 120x49x32 cm³ were conducted. Seven days old African catfish larvae with an initial total length and weight of 7.84 (±0.40) mm and 4.40 (±1.18) mg respectively in the first trial and similarly 7.52(±0.61) mm and 3.98 (±0.56) mg in the second trial at the rate of same stocking densities of 2500 larvae in each aquarium were stocked in both trials. Cannibalistic larvae were separated by using grader frame from each treatment at 7 days and 5 days interval during first and second trial respectively. Two mesh sizes i.e., 5 mm and 7 mm were used in the grader frame in both trials. Survival rate was significantly higher in T1 than that of T2 in each trial. Grading of larvae with 5 days interval resulted higher survival rate than that of 7 days interval.
Resumo:
This study examines the harvest and mean production in relation to the stocking of P. monodon fry during the period between March 1992 and October 1994, at the farm owned by M/s Monugung Sea Food Ltd., Cox's Bazar. The analysis shows that production figures were initially up to expectation, but after harvesting 4 crops within 16 months, production sharply decreased. The unexpected high mortality of the growing stock was due to outbreak of an uncontrollabe disease (Vibriosis). Significantly higher variations in production, survival and growth were also noted among the different treatments.
Resumo:
This paper explores the mechanism of triggering in a simple thermoacoustic system, the Rijke tube. It is demonstrated that additive stochastic perturbations can cause triggering before the linear stability limit of a thermoacoustic system. When triggering from low noise amplitudes, the system is seen to evolve to self-sustained oscillations via an unstable periodic solution of the governing equations. Practical stability is introduced as a measure of the stability of a linearly stable state when finite perturbations are present. The concept of a stochastic stability map is used to demonstrate the change in practical stability limits for a system with a subcritical bifurcation, once stochastic terms are included. The practical stability limits are found to be strongly dependent on the strength of noise.
Resumo:
An aquaponic system was studied through the integrated culture of mono-sex GIFT and two types of vegetables viz. morning glory, Ipomoea reptans and taro, Colocasia esculenta in a recirculating system for 15 weeks. Tilapia fry of uniform size of 0.76 g were released in three treatments (stocking densities): 106 fish/m³ (T1), 142 fish/m³ (T2) and 177 fish/m³ (T3) to assess the effect of stocking density on the growth performance of fish. Fish were fed with a commercial feed containing 25% protein. Weight gain (g) of tilapia ranged from 19.41 to 32.67 g and was inversely related with stocking density. Percent weight gain varied between 2553.99 and 4298.68% and was significantly different among the treatments. SGR ranged from 3.09 to 3.59% per day and varied significantly. FCR varied from 2.19 to 2.69 and had a positive correlation with stocking density. The highest survival rate (%) was achieved in T1 (99%) followed by T2 (98%) and T3 (96%). Production of fish ranged from 3.43 to 3.52 kg/m³ and was inversely related with stocking density. The present study demonstrated that 106 fish/m³ was the best stocking density in terms of growth, food conversion ratio, survival and production for tilapia culture in the aquaponic system.
Resumo:
The study was conducted to compare the performance of different nursing practices of giant freshwater prawn (Macrobrachium rosenbergii) post-larvae (PL). Three treatments such as only fertilizers (T1), fertilizers with 5% supplementary feed (local feed) (T2), and 10% commercial feed (T3) were applied in the nursing system of prawn PLs in earthen pond. An earthen pond (315m²) was divided into nine equal small ponds by fine meshed nylon nets. Feeds were used once daily on a tray placed near the pond bottom. There was a significant difference (p<0.05) in some water quality parameters like pH and total alkalinity, but all measured water quality parameters viz. water temperature, transparency, dissolved oxygen and ammonia-nitrogen were within the acceptable range for nursing of prawn PL. The results showed that the mean final lengths of prawn post-larvae were 6.3±0.07 cm, 7.12±0.22 cm and 8.17±0.16 cm in T1, T2 and T3, respectively. There were significant difference (p<0.05) in mean final length of prawn PL among the treatments. Significantly higher (p<0.05) average daily weight gain was observed in T3 (0.071 ±0.007 g) than in T2 (0.052±0.006 g) and T1 (0.031 ±0.002 g). The specific growth rate (SGR) of T3 (8.81±0.26) was found significantly higher (p<0.05) than T2 (8.35±0.22) and T1 (7.42±0.11). Survival rate (%) was also significantly higher (p<0.05) in T3 (66.24±1.58) than in T2 (60.52±1.64) and T1 (53.86±2.71). Therefore, it may be concluded that the growth and survival in prawn nursery was better in commercial feed than only fertilizers and fertilizers with local feeds.
Resumo:
Both decision making and sensorimotor control require real-time processing of noisy information streams. Historically these processes were thought to operate sequentially: cognitive processing leads to a decision, and the outcome is passed to the motor system to be converted into action. Recently, it has been suggested that the decision process may provide a continuous flow of information to the motor system, allowing it to prepare in a graded fashion for the probable outcome. Such continuous flow is supported by electrophysiology in nonhuman primates. Here we provide direct evidence for the continuous flow of an evolving decision variable to the motor system in humans. Subjects viewed a dynamic random dot display and were asked to indicate their decision about direction by moving a handle to one of two targets. We probed the state of the motor system by perturbing the arm at random times during decision formation. Reflex gains were modulated by the strength and duration of motion, reflecting the accumulated evidence in support of the evolving decision. The magnitude and variance of these gains tracked a decision variable that explained the subject's decision accuracy. The findings support a continuous process linking the evolving computations associated with decision making and sensorimotor control.
Resumo:
We have cloned a mouse homologue (designated Myak) of the yeast protein kinase YAK1. The 1210 aa open reading frame contains a putative protein kinase domain, nuclear localization sequences and PEST sequences. Myak appears to be a member of a growing family of YAK1-related genes that include Drosophila and human Minibrain as well as a recently identified rat gene ANPK that encode a steroid hormone receptor interacting protein. RNA blot analysis revealed that Myak is expressed at low levels ubiquitously but at high levels in reproductive tissues, including testis, epididymis, ovary, uterus, and mammary gland, as well as in brain and kidney. In situ hybridization analysis on selected tissues revealed that Myak is particularly abundant in the hormonally modulated epithelia of the epididymis, mammary gland, and uterus, in round spermatids in the testis, and in the corpora lutea in the ovary, Myak is also highly expressed in the aqueduct of the adult brain and in the brain and spinal cord of day 12.5 embryos, Mol. Reprod. Dev. 55:372-378, 2000. (C) 2000 Wiley-Liss, Inc.
A design strategy in the propulsion system attachment to a submarine hull to minimise radiated noise
Resumo:
Vibration modes of a submerged hull are excited by fluctuating forces generated at the propeller and transmitted to the hull via the propeller-shafting system. The low frequency hull vibrational modes result in significant sound radiation. This work investigates the reduction of the far-field radiated sound pressure by optimising the connection point of the shafting system to the hull. The submarine hull is modelled as a fluid loaded cylindrical hull with truncated conical shells at each end. The propeller-shafting system consists of the propeller, shaft, thrust bearing and foundation, and is modelled in a modular approach using a combination of spring-mass-damper elements and continuous systems (beams, plates, shells). The foundation is attached to the stern side end plate of the hull, which is modelled as a circular plate coupled to an annular plate. By tuning the connection radius of the foundation to the end plate, the maximum radiated noise in a given frequency range can be minimised.