899 resultados para Strategic urban planning
Resumo:
A number of communities across the United States are creating visionary documents called youth master plans (YMPs) to promote youth participation, and to focus on youth needs. This article presents an analysis of 38 YMPs from communities across the United States. This multiple methods research included a questionnaire, interviews, and an extensive document analysis. Four key YMP ingredients which enable youth participation were revealed: valuing youth voice through an asset-based approach; providing specific and meaningful participation opportunities for youth in both everyday life and community governance; the presence of a community champion alongside the collaboration of multiple entities within a community; and specific implementation strategies to ensure participation occurs in meaningful ways. Recommendations for YMP improvement and suggestions for future research are also presented.
Resumo:
This study developed a comprehensive research methodology for identification and quantification of sources responsible for pollutant build-up and wash-off from urban road surfaces. The study identified soil and asphalt wear, and non-combusted diesel fuel as the most influential sources for metal and hydrocarbon pollution respectively. The study also developed mathematical models to relate contributions from identified sources to underlying site specific factors such as land use and traffic. Developed mathematical model will play a key role in urban planning practices, enabling the implementation of effective water pollution control strategies.
Resumo:
It is argued that the smart cities model promise solutions to fuel sustainable development and a high quality of life with a wise management of natural resources, through participatory action and engagement. The paper provides a critical review of this model and application attempts of smart urban technologies in contemporary cities by particularly looking into emerging practices of ubiquitous eco-cities as exemplar smart cities initiatives. Through a thorough review of literature and best practices on the smart cities model, this paper attempts to address the research question of whether smart cities model is just another fashionable city brand or an effective urban development and management model to solve the problems of our cities. The findings shed light on urban planning and development considerations for the integration of smart urban technologies and their possible implications in shaping up of the built environment to produce prosperous and sustainable urban futures.
Resumo:
In the 21st century city, public space for a range of users, but especially children and young people, has come under threat. Watson proposed that “public space itself has come under attack from several directions-thematisation, enclosure into malls and other controlled spaces, and privatisation, or from urban planning and design interventions to erase its uniqueness”. Largely as a result of these trends, Scott observed that “young urbanites form a marginalised age class movement is restricted, out of fear and distrust, within aims to protect, monitored by city surveillance methods within the security-obsessed fabric”. The use of public space by children and young people is a contentious issue in a number of countries and a range of measures deployed to control public space curtail the rights of children and young people to claim the space for their use through curfews, oppressive camera surveillance and at times, the unwarranted attentions of police and private security personnel.
Resumo:
Urbanisation significantly changes the characteristics of a catchment as natural areas are transformed to impervious surfaces such as roads, roofs and parking lots. The increased fraction of impervious surfaces leads to changes to the stormwater runoff characteristics, whilst a variety of anthropogenic activities common to urban areas generate a range of pollutants such as nutrients, solids and organic matter. These pollutants accumulate on catchment surfaces and are removed and trans- ported by stormwater runoff and thereby contribute pollutant loads to receiving waters. In summary, urbanisation influences the stormwater characteristics of a catchment, including hydrology and water quality. Due to the growing recognition that stormwater pollution is a significant environmental problem, the implementation of mitigation strategies to improve the quality of stormwater runoff is becoming increasingly common in urban areas. A scientifically robust stormwater quality treatment strategy is an essential requirement for effective urban stormwater management. The efficient design of treatment systems is closely dependent on the state of knowledge in relation to the primary factors influencing stormwater quality. In this regard, stormwater modelling outcomes provide designers with important guidance and datasets which significantly underpin the design of effective stormwater treatment systems. Therefore, the accuracy of modelling approaches and the reliability modelling outcomes are of particular concern. This book discusses the inherent complexity and key characteristics in the areas of urban hydrology and stormwater quality, based on the influence exerted by a range of rainfall and catchment characteristics. A comprehensive field sampling and testing programme in relation to pollutant build-up, an urban catchment monitoring programme in relation to stormwater quality and the outcomes from advanced statistical analyses provided the platform for the knowledge creation. Two case studies and two real-world applications are discussed to illustrate the translation of the knowledge created to practical use in relation to the role of rainfall and catchment characteristics on urban stormwater quality. An innovative rainfall classification based on stormwater quality was developed to support the effective and scientifically robust design of stormwater treatment systems. Underpinned by the rainfall classification methodology, a reliable approach for design rainfall selection is proposed in order to optimise stormwater treatment based on both, stormwater quality and quantity. This is a paradigm shift from the common approach where stormwater treatment systems are designed based solely on stormwater quantity data. Additionally, how pollutant build-up and stormwater runoff quality vary with a range of catchment characteristics was also investigated. Based on the study out- comes, it can be concluded that the use of only a limited number of catchment parameters such as land use and impervious surface percentage, as it is the case in current modelling approaches, could result in appreciable error in water quality estimation. Influential factors which should be incorporated into modelling in relation to catchment characteristics, should also include urban form and impervious surface area distribution. The knowledge created through the research investigations discussed in this monograph is expected to make a significant contribution to engineering practice such as hydrologic and stormwater quality modelling, stormwater treatment design and urban planning, as the study outcomes provide practical approaches and recommendations for urban stormwater quality enhancement. Furthermore, this monograph also demonstrates how fundamental knowledge of stormwater quality processes can be translated to provide guidance on engineering practice, the comprehensive application of multivariate data analyses techniques and a paradigm on integrative use of computer models and mathematical models to derive practical outcomes.
Resumo:
Biophilic urbanism, or urban design that reflects humanity’s innate need for nature, stands to make significant contributions to a range of national, state and local government policies related to climate change mitigation and adaptation, by investigating ways in which nature can be integrated into, around and on top of buildings. Potential benefits of such design include reducing the heat island effect, reducing energy consumption for thermal control, enhancing urban biodiversity, improving well being and productivity, improving water cycle management, and assisting in the response to growing needs for densification and revitalisation of cities. This report will give an overview of the concept of biophilia and consider enablers and disablers to its application to urban planning and design. The paper will present findings from stakeholder engagement and a series of detailed case studies, related to a consideration of the economics of the use of biophilic elements (direct and indirect).
Resumo:
Biophilic urbanism, or urban design which refl ects human’s innate need for nature in and around and on top of our buildings, stands to make signifi cant contributions to a range of national, state and local government policies related to climate change mitigation and adaptation. Potential benefi ts include reducing the heat island effect, reducing energy consumption for thermal control, enhancing urban biodiversity, improving well being and productivity, improving water cycle management, and assisting in the response to growing needs for densifi cation and revitalisation of cities. This discussion paper will give an overview of the concept of biophilia and consider enablers and disablers to its application to urban planning and design. The paper will present findings from stakeholder engagement related to a consideration of the economics of the use of biophilic elements (direct and indirect). The paper outlines eight strategic areas being considered in the project, including how a ‘daily minimum dose’ of nature can be received through biophilic elements, and how planning and policy can underpin effective biophilic urbanism.
Resumo:
Digital technology offers enormous benefits (economic, quality of design and efficiency in use) if adopted to implement integrated ways of representing the physical world in a digital form. When applied across the full extent of the built and natural world, it is referred to as the Digital Built Environment (DBE) and encompasses a wide range of approaches and technology initiatives, all aimed at the same end goal: the development of a virtual world that sufficiently mirrors the real world to form the basis for the smart cities of the present and future, enable efficient infrastructure design and programmed maintenance, and create a new foundation for economic growth and social well-being through evidence-based analysis. The creation of a National Data Policy for the DBE will facilitate the creation of additional high technology industries in Australia; provide Governments, industries and citizens with greater knowledge of the environments they occupy and plan; and offer citizen-driven innovations for the future. Australia has slipped behind other nations in the adoption and execution of Building Information Modelling (BIM) and the principal concern is that the gap is widening. Data driven innovation added $67 billion to the Australian economy in 20131. Strong open data policy equates to $16 billion in new value2. Australian Government initiatives such as the Digital Earth inspired “National Map” offer a platform and pathway to embrace the concept of a “BIM Globe”, while also leveraging unprecedented growth in open source / open data collaboration. Australia must address the challenges by learning from international experiences—most notably the UK and NZ—and mandate the use of BIM across Government, extending the Framework for Spatial Data Foundation to include the Built Environment as a theme and engaging collaboration through a “BIM globe” metaphor. This proposed DBE strategy will modernise the Australian urban planning and the construction industry. It will change the way we develop our cities by fundamentally altering the dynamics and behaviours of the supply chains and unlocking new and more efficient ways of collaborating at all stages of the project life-cycle. There are currently two major modelling approaches that contribute to the challenge of delivering the DBE. Though these collectively encompass many (often competing) approaches or proprietary software systems, all can be categorised as either: a spatial modelling approach, where the focus is generally on representing the elements that make up the world within their geographic context; and a construction modelling approach, where the focus is on models that support the life cycle management of the built environment. These two approaches have tended to evolve independently, addressing two broad industry sectors: the one concerned with understanding and managing global and regional aspects of the world that we inhabit, including disciplines concerned with climate, earth sciences, land ownership, urban and regional planning and infrastructure management; the other is concerned with planning, design, construction and operation of built facilities and includes architectural and engineering design, product manufacturing, construction, facility management and related disciplines (a process/technology commonly known as Building Information Modelling, BIM). The spatial industries have a strong voice in the development of public policy in Australia, while the construction sector, which in 2014 accounted for around 8.5% of Australia’s GDP3, has no single voice and because of its diversity, is struggling to adapt to and take advantage of the opportunity presented by these digital technologies. The experience in the UK over the past few years has demonstrated that government leadership is very effective in stimulating industry adoption of digital technologies by, on the one hand, mandating the use of BIM on public procurement projects while at the same time, providing comparatively modest funding to address the common issues that confront the industry in adopting that way of working across the supply chain. The reported result has been savings of £840m in construction costs in 2013/14 according to UK Cabinet Office figures4. There is worldwide recognition of the value of bringing these two modelling technologies together. Australia has the expertise to exercise leadership in this work, but it requires a commitment by government to recognise the importance of BIM as a companion methodology to the spatial technologies so that these two disciplinary domains can cooperate in the development of data policies and information exchange standards to smooth out common workflows. buildingSMART Australasia, SIBA and their academic partners have initiated this dialogue in Australia and wish to work collaboratively, with government support and leadership, to explore the opportunities open to us as we develop an Australasian Digital Built Environment. As part of that programme, we must develop and implement a strategy to accelerate the adoption of BIM processes across the Australian construction sector while at the same time, developing an integrated approach in concert with the spatial sector that will position Australia at the forefront of international best practice in this area. Australia and New Zealand cannot afford to be on the back foot as we face the challenges of rapid urbanisation and change in the global environment. Although we can identify some exemplary initiatives in this area, particularly in New Zealand in response to the need for more resilient urban development in the face of earthquake threats, there is still much that needs to be done. We are well situated in the Asian region to take a lead in this challenge, but we are at imminent risk of losing the initiative if we do not take action now. Strategic collaboration between Governments, Industry and Academia will create new jobs and wealth, with the potential, for example, to save around 20% on the delivery costs of new built assets, based on recent UK estimates.
Resumo:
Following decades of neglect and decline, many US cities have undergone a dramatic renaissance. From New York to Nashville and Pittsburgh to Portland governments have implemented innovative redevelopment strategies to adapt to a globally integrated, post-industrial economy and cope with declining industries, tax bases, and populations - but the urban comeback has been highly uneven. Urban Revitalization integrates academic and policy research with professional knowledge and techniques. Written in an accessible style and with a thoughtful structure, it will provide graduate and upper-level undergraduate students with a comprehensive resource while also serving as a reference for professionals.
Resumo:
Wild carnivores are becoming increasing common in urban areas. In Australia, dingoes exist, in most large cities and towns within their extended range. However, little empirical data is available to inform dingo management or address potential dingo–human conflicts during urban planning. From GPS tracking data, the nine dingoes, predominately juvenile and female, we tracked lived within 700 m of residential homes at all times and frequently crossed roads, visited backyards and traversed built-up areas. Home range sizes ranged between 0.37 km2 and 100.32 km2. Dingoes were mostly nocturnal, averaging 591 m/h between dusk and dawn. Juvenile and adult dingoes spent up to 19% and 72% of their time in urban habitats. Fresh scats from most areas surveyed tested positive to a variety of common zoonoses. These data suggest dingoes are capable of exploiting peri-urban areas and might contribute to human health and safety risks, the significance of which remains unknown.
Resumo:
The idea of ‘wicked’ problems has made a valuable contribution to recognising the complexity and challenges of contemporary planning. However, some wicked policy problems are further complicated by a significant moral, psychological, religious or cultural dimension. This is particularly the case for problems that possess strong elements of abjection and symbolic pollution and high degrees of psychosocial sensitivity. Because this affects the way these problems are framed and discussed they are also characterised by high levels of verbal proscription. As a result, they are not discussed in the rational and emotion-free way that conventional planning demands and can become obscured or inadequately acknowledged in planning processes. This further contributes to their wickedness and intractability. Through paradigmatic urban planning examples, we argue that placing their unspeakable nature at the forefront of enquiry will enable planners to advocate for a more contextually and culturally situated approach to planning, which accommodates both emotional and embodied talk alongside more technical policy contributions. Re-imagining wicked problems in this way has the potential to enhance policy and plan-making and to disrupt norms, expose their contingency, and open new ways of planning for both the unspeakable and the merely wicked.
Resumo:
Recent decades have seen an almost obsessive focus on creativity in an urban development context. Yet, creativity has come to be prized not so much for the intrinsic values of imagination, innovation and experimentation as for the possibility to exploit these qualities as a means of urban revitalization and wealth generation. This policy emphasis has both contributed to the misplaced assumption that artistic activity causes gentrification and displacement while, at the same time, often setting in motion programs that are detrimental to the creative environments such policies claim to support. It is time to end the current approach to creative city planning, which treats the arts as amenities to catalyze land development and lure upscale consumption.
Resumo:
Knowledge generation and innovation have been a priority for global city administrators particularly during the last couple of decades. This is mainly due to the growing consensus in identifying knowledge-based urban development as a panacea to the burgeoning economic problems. Place making has become a critical element for success in knowledge-based urban development as planning and branding places is claimed to be an effective marketing tool for attracting investment and talent. This paper aims to investigate the role of planning and branding in place making by assessing the effectiveness of planning and branding strategies in the development of knowledge and innovation milieus. The methodology of the study comprises reviewing the literature thoroughly, developing an analysis framework, and utilizing this framework in analyzing Brisbane’s knowledge community precincts—namely Boggo Road Knowledge Precinct, Kelvin Grove Urban Knowledge Village, and Sippy Downs Knowledge Town. The analysis findings generate invaluable insights in Brisbane’s journey in place making for knowledge and innovation milieus and communities. The results suggest as much as good planning, branding strategies and practice, the requirements of external and internal conditions also need to be met for successful place making in knowledge community precincts.
Resumo:
There is a growing need to understand the exchange processes of momentum, heat and mass between an urban surface and the atmosphere as they affect our quality of life. Understanding the source/sink strengths as well as the mixing mechanisms of air pollutants is particularly important due to their effects on human health and climate. This work aims to improve our understanding of these surface-atmosphere interactions based on the analysis of measurements carried out in Helsinki, Finland. The vertical exchange of momentum, heat, carbon dioxide (CO2) and aerosol particle number was measured with the eddy covariance technique at the urban measurement station SMEAR III, where the concentrations of ultrafine, accumulation mode and coarse particle numbers, nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3) and sulphur dioxide (SO2) were also measured. These measurements were carried out over varying measurement periods between 2004 and 2008. In addition, black carbon mass concentration was measured at the Helsinki Metropolitan Area Council site during three campaigns in 1996-2005. Thus, the analyzed dataset covered far, the most comprehensive long-term measurements of turbulent fluxes reported in the literature from urban areas. Moreover, simultaneously measured urban air pollution concentrations and turbulent fluxes were examined for the first time. The complex measurement surrounding enabled us to study the effect of different urban covers on the exchange processes from a single point of measurement. The sensible and latent heat fluxes closely followed the intensity of solar radiation, and the sensible heat flux always exceeded the latent heat flux due to anthropogenic heat emissions and the conversion of solar radiation to direct heat in urban structures. This urban heat island effect was most evident during winter nights. The effect of land use cover was seen as increased sensible heat fluxes in more built-up areas than in areas with high vegetation cover. Both aerosol particle and CO2 exchanges were largely affected by road traffic, and the highest diurnal fluxes reached 109 m-2 s-1 and 20 µmol m-2 s-1, respectively, in the direction of the road. Local road traffic had the greatest effect on ultrafine particle concentrations, whereas meteorological variables were more important for accumulation mode and coarse particle concentrations. The measurement surroundings of the SMEAR III station served as a source for both particles and CO2, except in summer, when the vegetation uptake of CO2 exceeded the anthropogenic sources in the vegetation sector in daytime, and we observed a downward median flux of 8 µmol m-2 s-1. This work improved our understanding of the interactions between an urban surface and the atmosphere in a city located at high latitudes in a semi-continental climate. The results can be utilised in urban planning, as the fraction of vegetation cover and vehicular activity were found to be the major environmental drivers affecting most of the exchange processes. However, in order to understand these exchange and mixing processes on a city scale, more measurements above various urban surfaces accompanied by numerical modelling are required.