952 resultados para Strand Conformation Polymorphism
Resumo:
This work evaluated chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) blends, with 20%, 25%, 30%, 35% and 40%(w/w) FHCSO content. Interesterification produced reduction of trisaturated and increase in monounsaturated and diunsaturated triacylglycerols contents, which caused important changes in temperatures and enthalpies associated with the crystallization and melting thermograms. It was verified reduction in medium crystal diameter in all blends, in addition crystal morphology modification. Crystallization kinetics revealed that crystal formation induction period and maximum solid fat content were altered according to FHCSO content in original blends and as a result of random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that interesterification decreased crystallization rates and altered crystalline morphology. However, X-ray diffraction analyses showed randomization did not change the original crystalline polymorphism. The original and interesterified blends had significant predominance of beta` polymorph, which is interesting for several food applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10, 20, 30, 40, and 50% (w/w) FHSBO content were interesterified under the following conditions: 20 min reaction time, 0.4% sodium methoxide catalyst, and 500 rpm stirring speed, at 100 A degrees C. The original and interesterified blends were examined for triacylglycerol composition, thermal behavior, microstructure, crystallization kinetics, and polymorphism. Interesterification produced substantial rearrangement of the triacylglycerol species in all the blends, reduction of trisaturated triacylglycerol content and increase in monounsaturated-disaturated and diunsaturated-monosaturated triacylglycerols. Evaluation of thermal behavior parameters showed linear relations with FHSBO content in the original blends. Blend melting and crystallization thermograms were significantly modified by the randomization. Interesterification caused significant reductions in maximum crystal diameter in all blends, in addition to modifying crystal morphology. Characterization of crystallization kinetics revealed that crystal formation induction period (tau (SFC)) and maximum solid fat content (SFC(max)) were altered according to FHSBO content in the original blends and as a result of the random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that-as compared with the original blends-interesterification decreased crystallization velocities and modified crystallization processes, altering crystalline morphology and nucleation mechanism. X-ray diffraction analyses revealed that interesterification altered crystalline polymorphism. The interesterified blends showed a predominance of the beta` polymorph, which is of more interest for food applications.
Resumo:
Mercury (Hg) exposure is associated with disease conditions, including cardiovascular problems. Although the mechanisms implicated in these complications have not been precisely defined yet, matrix metalloproteinases (MMPs) may be involved. The gene encoding MMP-2 presents genetic polymorphisms which affect the expression and activity level of this enzyme. A common polymorphism of MMP-2 gene is the C(-1306)T (rs 243865), which is known to disrupt a Sp1-type promoter site (CCACC box), thus leading to lower promoter activity associated with the T allele. This study aimed at examining how this polymorphism affects the circulating MMP-2 levels and its endogenous inhibitor, the tissue inhibitor of metalloproteinase-2 (TIMP-2) in 210 subjects environmentally exposed to Hg. Total blood and plasma Hg concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP-2 and TIMP-2 concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Genotypes for the C(-1306)T polymorphism were determined by Taqman (R) Allele Discrimination assay. We found a positive association (p = 0.0057) between plasma Hg concentrations and MMP-2/TIMP-2 (an index of net MMP-2 activity). The C(-1306)T polymorphism modified MMP-2 concentrations (p = 0.0465) and MMP-2/TIMP-2 ratio (p = 0.0060) in subjects exposed to Hg, with higher MMP-2 levels been found in subjects carrying the C allele. These findings suggest a significant interaction between the C(-1306)T polymorphism and Hg exposure, possibly increasing the risk of developing diseases in subjects with the C allele. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Mercury (Hg) exposure causes health problems including cardiovascular diseases. Although precise mechanisms have not been precisely defined yet, matrix metalloproteinases (MMPs) may be involved. The gene encoding MMP-9 presents genetic polymorphisms which affect the expression and activity level of this enzyme. Two polymorphisms in the promoter region [C(-1562)T and (CA)(n)] are functionally relevant, and are implicated in several diseases. This study aimed at examining how these polymorphisms affect the circulating MMP-9 levels and its endogenous inhibitor, the tissue inhibitor of metalloproteinase-1 (TIMP-1) in 266 subjects environmentally exposed to Hg. Blood and plasma Hg concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP-9 and TIMP-1 concentrations were measured in plasma samples by gelatin zymography and ELISA, respectively. Genotypes for the C(-1562)T and the microsatellite (CA)(n) polymorphisms were determined. We found a positive association (P<0.05) between plasma Hg concentrations and MMP-9/TIMP-1 ratio (an index of net MMP-9 activity). When the subjects were divided into tertiles with basis on their plasma Hg concentrations, we found that the (CA)(n) polymorphism modified MMP-9 concentrations and MMP-9/TIMP-1 ratio in subjects with the lowest Hg concentrations (first tertile), with the highest MMP-9 levels being found in subjects with genotypes including alleles with 21 or more CA repeats (H alleles) (P<0.05). Conversely, this polymorphism had no effects on subjects with intermediate or high plasma Hg levels (second and third tertiles, respectively). The C(-1562)T polymorphism had no effects on MMP-9 levels. These findings suggest a significant interaction between the (CA)(n) polymorphism and low levels of Hg exposure, possibly increasing the risk of developing diseases in subjects with H alleles. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Human N-acetyltransferase type 1 (NAT1) catalyses the N- or O-acetylation of various arylamine and heterocyclic amine substrates and is able to bioactivate several known carcinogens. Despite wide inter-individual variability in activity, historically, NAT1 was considered to be monomorphic in nature. However, recent reports of allelic variation at the NAT1 locus suggest that it may be a polymorphically expressed enzyme. In the present study, peripheral blood mononuclear cell NAT1 activity in 85 individuals was found to be bimodally distributed with approximately 8% of the population being slow acetylators. Subsequent sequencing of the individuals having slow acetylator status showed all to have either a (CT)-T-190 or G(560)A base substitution located in the protein encoding region of the NAT1 gene. The (CT)-T-190 base substitution changed a highly conserved Arg(64), which others have shown to be essential for fully functional NAT1 protein. The (CT)-T-190 mutation has not been reported previously and we have named it NAT1*17. The G(560)A mutation is associated with the base substitutions previously observed in the NAT1*10 allele and this variant (NAT1*14) encodes for a protein with reduced acetylation capacity. A novel method using linear PCR and dideoxy terminators was developed for the detection of NAT1*14 and NAT1*17. Neither of these variants was found in the rapid acetylator population. We conclude that both the (CT)-T-190 (NAT1*17) and G(560)A (NAT1*14) NAT1 structural variants are involved in a distinct NAT1 polymorphism. Because NAT1 can bioactivate several carcinogens, this polymorphism may have implications for cancer risk in individual subjects. (C) 1998 Chapman & Hall Ltd.
Resumo:
The small amounts of antibacterial peptides that can be isolated from insects do not allow detailed studies of their range of activity, side-chain sugar requirements, or their conformation, factors that frequently play roles in the mode of action. In this paper, we report the solid-phase step-by-step synthesis of diptericin, an 82-mer peptide, originally isolated from Phormia terranovae. The unglycosylated peptide was purified to homogeneity by conventional reversed-phase high performance liquid chromatography, and its activity spectrum was compared to that Of synthetic unglycosylated drosocin, which shares strong sequence homology with diptericin's N-terminal domain. Diptericin appeared to have antibacterial activity:for only a limited number of Gram-negative bacteria. Diptericin's submicromolar potency against Escherichia coli strains indicated that, in a manner similar to drosocin, the presence of the carbohydrate side chain is not,necessary to kill bacteria. Neither the N-terminal, drosocin-analog fragment, nor the C-terminal, glycine-rich attacin-analog region was active against any of the bacterial strains studied, regardless of whether the Gal-GalNAc disaccharide units were attached. This suggested that the active site of diptericin fell outside the drosocin or attacin homology domains. In addition, the conformation of diptericin did not seem to play a role in the antibacterial activity, as was demonstrated by the complete lack of ordered structure by two-dimensional nuclear magnetic resonance spectroscopy and circular dichroism. Diptericin completely killed bacteria within I h, considerably faster than drosocin and the attacins; unlike some other, fast-acting antibacterial peptides, diptericin did not lyse normal mammalian cells. Taken together, these data suggest diptericin does not belong to any known class of antibacterial peptides.
Resumo:
A series of peptides corresponding to isolated regions of Tau (tau) protein have been synthesized and their conformations determined by H-1 NMR spectroscopy. Immunodominant peptides corresponding to tau(224-240) and a bisphosphorylated derivative in which a single Thr and a single Ser are phosphorylated at positions 231 and 235 respectively, and which are recognized by an Alzheimer's disease-specific monoclonal antibody, were the main focus of the study. The nonphosphorylated peptide adopts essentially a random coil conformation in aqueous solution, but becomes slightly more ordered into P-type structure as the hydrophobicity of the solvent is increased by adding up to 50% trifluoroethanol (TFE). Similar trends are observed for the bisphosphorylated peptide, with a somewhat stronger tendency to form an extended structure, There is tentative NMR evidence for a small population of species containing a turn at residues 229-231 in the phosphorylated peptide, and this is strongly supported by CD spectroscopy. A proposal that the selection of a bioactive conformation from a disordered solution ensemble may be an important step (in either tubulin binding or in the formation of PHF) is supported by kinetic data on Pro isomerization. A recent study showed that Thr231 phosphorylation affected the rate of prolyl isomerization and abolished tubulin binding. This binding was restored by the action of the prolyl isomerase Pin1. In the current study, we find evidence for the existence of both trans and cis forms of tau peptides in solution but no difference in the equilibrium distribution of cis-trans isomers upon phosphorylation. Increasing hydrophobicity decreases the prevalence of cis forms and increases the major trans conformation of each of the prolines present in these molecules. We also synthesized mutant peptides containing Tyr substitutions preceding the Pro residues and found that phosphorylation of Tyr appears to have an effect on the equilibrium ratio of cis-trans isomerization and decreases the cis content.
Resumo:
The tetraalcohol 2,3,5,6-endo,endo,endo,endo-tetrakis(hydroxymethyl]bicyclo[2.2.1]heptane (tetol, 1) has been prepared and crystallises readily as the lithium(I) complex [Li(1)(2)]Cl, forming an oligomeric multi-chain structure in which pairs of alcohols from two crystallographically independent tetol molecules bind lithium ions tetrahedrally. However, formation of monomeric structures in solution is inferred from electrospray mass spectroscopy, which has also shown evidence of exchange of lithium ion in the complexed species by added alkaline earth ions. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Plant cyanogenesis, the release of cyanide from endogenous cyanide-containing compounds, is an effective herbivore deterrent. This paper characterises cyanogenesis in the Australian tree Eucalyptus polyanthemos Schauer subsp. vestita L. Johnson and K. Hill for the first time. The cyanogenic glucoside prunasin ((R)-mandelonitrile beta-D-glucoside) was determined to be the only cyanogenic compound in E. polyanthemos foliage. Two natural populations of E. polyanthernos showed quantitative variation in foliar prumasin concentration, varying from zero (i.e. acyanogenic) to 2.07 mg CN g(-1) dry weight in one population and from 0.17 to 1.98 mg CN g(-1) dry weight in the other. No significant difference was detected between the populations with respect to the mean prunasin concentration or the degree of variation in foliar prunasin, despite significant differences in foliar nitrogen. Variation between individuals was also observed with respect to the capacity of foliage to catabolise prunasin to form cyanide. Moreover, variation in this capacity generally correlated with the amount of prunasin in the tissue, suggesting genetic linkage between prunasin and beta-glucosidase. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Bothropstoxin-I (BthTx-I), a Lys49-PLA(2) from Bothrops jararacussu venom, permeabilizes membranes by a non-hydrolytic Ca(2+)-independent mechanism. The BthTx-I showed activity against liposomes including 10% and 50% negatively charged lipids at pH 7.0, but not at pH 5.0. Nevertheless, ultracentrifugation and FRET demonstrated that at pH 5.0 the BthTx-I is bound to 50% negatively charged membranes. ANS binding identified a non-native monomeric conformation at pH 5.0, suggesting that tertiary structure alterations result in activity loss of the BthTx-I at low pH. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The inflammasome is an inducible cytoplasmic structure that is responsible for production and release of biologically active interleukin-1 (IL-1). A polymorphism in the inflammasome component NALP3 has been associated with decreased IL-1 levels and increased occurrence of vaginal Candida infection. We hypothesized that this polymorphism-induced variation would influence susceptibility to infertility. DNA was obtained from 243 women who were undergoing in vitro fertilization (IVF) and tested for a length polymorphism in intron 2 of the gene coding for NALP3 (gene symbol CIAS1). At the conclusion of testing the findings were analyzed in relation to clinical parameters and IVF outcome. The frequency of the 12 unit repeat allele, associated with maximal inflammasome activity, was 62.3% in cases of female infertility vs. 75.6% in cases where only the male partner had a detectable fertility problem (p = 0.0095). Conversely, the frequency of the 7 unit repeat allele was 28.9% in those with a female fertility problem, 17.0% in women with infertile males and 18.4% in idiopathic infertility (p = 0.0124). Among the women who were cervical culture-positive for mycoplasma the frequency of the 7 unit repeat was 53.7% as opposed to 19.5% in those negative for this infection (p < 0.0001). We conclude that the CIAS1 7 unit repeat polymorphism increases the likelihood of mycoplasma infection-associated female infertility. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Precis Women with recurrent vulvovaginal candidiasis (RVC) due to a polymorphism in codon 54 of the MBL2 gene respond better to fluconazole maintenance therapy than do women with other underlying causes. Objective To explain differences in response rates to maintenance therapy with fluconazole in women suffering from RVC by evaluating associations with a polymorphism in the gene coding for mannose-binding lectin (MBL). Design Follow-up study, neted case-control group. Setting Women attending vulvoginitis clinic for RVC. Population Women participating in a multicentric study in Belgium with a degressive dose of fluconazole for RVC (the ReCiDiF trial) were divided into good responders, intermediate responders and nonresponders according to the number of relapses they experienced during therapy. From 109 of these women with adequate follow-up data, vaginal lavage with 2 ml of saline were performed at the moment of a proven acute attack at inclusion in the study, before maintenance treatment was started. A buccal swab was obtained from 55 age-matched women without a history of Candida infections, serving as a control group. Methods Extracted DNA from buccal or vaginal cells was tested for codon 54 MBL2 gene polymorphism by polymerase chain reaction and endonuclease digestion. Main outcome measures Frequency of MBL2 condon 54 allele B in women with optimal or poor response to maintenance therapy in composition with controls. Results Women (n = 109) suffering from RVC were more likely to carry the variant MBL2 codon 54 allele B than control women (20 versus 6.6%, OR 3.4 [95% CI 1.3-8.2], P = 0.01). B alleles were present in 25% of the 36 women not suffering from any recurrence during the maintenance therapy with decreasing doses of fluconazole (OR 4.9 [95% CI 1.9-12.5], P = 0.0007 versus controls), in 20% of the 43 women with sporadic recurrences (OR 3.6 [95% CI 1.4-9.2], P = 0.007 versus controls) and in 15% of the 30 women who had to interrupt the treatment regimen due to frequent relapses (P = 0.097 versus controls). Conclusions The MBL2 codon 54 gene polymorphism is more frequent in Belgian women suffering from RVC than in controls. The presence of the B allele is associated with a superior response to fluconazole maintenance therapy as compared with RVC patients without this polymorphism. We conclude that RVC due to deficient MBL production is more easily helped with antifungal medication than is RVC due to some other mechanism.
Resumo:
N-Acetylglucosamine (GlcNAc) is the major immunoepitope of group A streptococcal cell wall carbohydrates. Antistreptococcal antibodies cross-reactive with anti-GlcNAc and laminin are present in sera of patients with rheumatic fever. The cross-reactivity of these antibodies with human heart valvular endothelium and the underlying basement membrane has been suggested to be a possible cause of immune-mediated valve lesion. Mannose-binding lectin (MBL) encoded by the MBL2 gene, a soluble pathogen recognition receptor, has high affinity for GlcNAc. We postulated that mutations in exon 1 of the MBL2 gene associated with a deficient serum level of MBL may contribute to chronic severe aortic regurgitation (AR) of rheumatic etiology. We studied 90 patients with severe chronic AR of rheumatic etiology and 281 healthy controls (HC) for the variants of the MBL2 gene at codons 52, 54, and 57 by using a PCR-restriction fragment length polymorphism-based method. We observed a significant difference in the prevalence of defective MBL2 alleles between patients with chronic severe AR and HC. Sixteen percent of patients with chronic severe AR were homozygotes or compound heterozygotes for defective MBL alleles in contrast to 5% for HC (P = 0.0022; odds ratio, 3.5 [ 95% confidence interval, 1.6 to 7.7]). No association was detected with the variant of the MASP2 gene. Our study suggests that MBL deficiency may contribute to the development of chronic severe AR of rheumatic etiology.