861 resultados para Strain-rate-dependent permeability
Resumo:
Accurate high-resolution records of snow accumulation rates in Antarctica are crucial for estimating ice sheet mass balance and subsequent sea level change. Snowfall rates at Law Dome, East Antarctica, have been linked with regional atmospheric circulation to the mid-latitudes as well as regional Antarctic snowfall. Here, we extend the length of the Law Dome accumulation record from 750 years to 2035 years, using recent annual layer dating that extends to 22 BCE. Accumulation rates were calculated as the ratio of measured to modelled layer thicknesses, multiplied by the long-term mean accumulation rate. The modelled layer thicknesses were based on a power-law vertical strain rate profile fitted to observed annual layer thickness. The periods 380–442, 727–783 and 1970–2009 CE have above-average snow accumulation rates, while 663–704, 933–975 and 1429–1468 CE were below average, and decadal-scale snow accumulation anomalies were found to be relatively common (74 events in the 2035-year record). The calculated snow accumulation rates show good correlation with atmospheric reanalysis estimates, and significant spatial correlation over a wide expanse of East Antarctica, demonstrating that the Law Dome record captures larger-scale variability across a large region of East Antarctica well beyond the immediate vicinity of the Law Dome summit. Spectral analysis reveals periodicities in the snow accumulation record which may be related to El Niño–Southern Oscillation (ENSO) and Interdecadal Pacific Oscillation (IPO) frequencies.
Resumo:
The photoactivation of a photosensitizer is the initial step in photodynamic therapy (PDT) where photochemical reactions result in the production of reactive oxygen species and eventually cell death. In addition to oxidizing biomolecules, some of these photochemical reactions lead to photosensitizer degradation at a rate dependent on the oxygen concentration among other factors. We investigated photodegradation of Photogem A (R) (28 mu M), a hematoporphyrin derivative, at different oxygen concentrations (9.4 to 625.0 mu M) in aqueous solution. The degradation was monitored by fluorescence spectroscopy. The degradation rate (M/s) increases as the oxygen concentration increases when the molar ratio of oxygen to PhotogemA (R) is greater than 1. At lower oxygen concentrations (< 25 mu M) an inversion of this behavior was observed. The data do not fit a simple kinetic model of first-order dependence on oxygen concentration. This inversion of the degradation rate at low oxygen concentration has not previously been demonstrated and highlights the relationship between photosensitizer and oxygen concentrations in determining the photobleaching mechanism(s). The findings demonstrate that current models for photobleaching are insufficient to explain completely the effects at low oxygen concentration.
Resumo:
The Major Gercino Shear Zone is one of the NE-SW lineaments that separate the Neoproterozoic Dom Feliciano Belt, of Brazil and Uruguay, into two different domains: a northwestern supracrustal domain from a southeastern granitoid domain. The shear zone, striking NE, is composed of protomylonites to ultramylonites with mainly dextral kinematic indicators. In Santa Catarina State, southern Brazil, the shear zone is composed of two mylonite belts. The mylonites have mineral orientations produced under greenschist fades conditions at a high strain rate. Strong flattening and coaxial deformation indicate the transpressive character, while the role of pure shear is emphasized by the orientation of the mylonite belts in relation to the inferred stress field component. The quartz microstructures point out that different dynamic recrystallization regimes and crystal plasticity were the dominant mechanisms of deformation during the mylonitization process. Additionally, the fabrics suggest that the glide systems are activated for deformation conditions compatible with the metamorphism in the middle greenschist facies. Elongated granitoid intrusions belonging to two petrographically, geochemically and isotopically distinct rock associations occur between the two mylonite belts. The structures observed in the granites result from a deformation range from magmatic to solid-state conditions points to a continuum of magma straining during and just after its crystallization. Conventional U-Pb analysis of multi-crystal zircon fractions yielded essentially identical ages of 609 +/- 16 Ma and 614 +/- 2 Ma for the two granitic associations, and constrain the transpressive phase of the shear zone. K-Ar ages of biotites between 585 and 560 Ma record the slow cooling and uplift of the intrusions. Some K-Ar ages of micas in regional mylonites are similar, suggesting that thermo-tectonic activity was intense up to this time, probably related to the agglutination of the granite belt to the supracrustal belt NW of the MGSZ. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
o presente trabalho teve por objetivo estudar o comportamento de um aço de alta resistência e baixa liga (com amostras de composição aproximada de 0,4% C, 0,6% Cr e 0,4% Mo), da classe API scr PIlO, utilizado na perfuração de petróleo offshore, frente a processos de fragilização causados pelo meio. Água do mar sintética foi utilizada como meio, com intuito de padronizar, em laboratório, as condições a que o material fica submetido na prática. Buscou-se avaliar e comparar o comportamento mecânico do material pela modificação dos parâmetros: temperatura, potencial aplicado ao material, e o efeito da presença ou ausência de H2S na solução. Para isso, foram realizados ensaios de tração pelo método de baixa taxa de deformação (da ordem de 10-6S-I), obtendo-se as curvas tensão x deformação nas diferentes situações ensaiadas, comparadas com as obtidas em óleo mineral. Análises fratográficas também foram utilizadas como forma de caracterizar os processos de fragilização. Além disso, estudou-se o comportamento eletroquímico do material nas diferentes condições através de ensaios de polarização potenciostáticos. Com isso, pode-se determinar quais as condições mais danosas e de maior risco para a utilização do material e em quais delas o seu uso é seguro. O aço estudado apresentou-se susceptível a processos de fragilização e todos os parâmetros analisados mostraram-se importantes no estudo desses processos.
Resumo:
The Cumuruxatiba basin is located at the southern coast State of Bahia in northeastern of Brazil. This basin was formed in distensional context, with rifting and subsequent thermal phase during Neocomian to late Cretaceous. At Cenozoic ages, the Abrolhos magmatism occurs in the basin with peaks during the Paleocene and Eocene. In this period, there was a kinematic inversion in the basin represented by folds related to reverse faults. Structural restoration of regional 2D seismic sections revealed that most of the deformation was concentrated at the beginning of the Cenozoic time with the peak at the Lower Eocene. The post-Eocene is marked by a decrease of strain rate to the present. The 3D structural modeling revealed a fold belt (trending EW to NE-SW) accommodating the deformation between the Royal Charlotte and Sulphur Minerva volcanic highs. The volcanic eruptions have caused a differential overburden on the borders of the basin. This acted as the trigger for halokinesis, as demonstrated by physical modeling in literature. Consequently, the deformation tends to be higher in the edges of the basin. The volcanic rocks occur mainly as concordant structures (sills) in the syn-tectonic sediment deposition showing a concomitant deformation. The isopach maps and diagrams of axis orientation of deformation revealed that most of the folds were activated and reactivated at different times during the Cenozoic. The folds exhibit diverse kinematic patterns over time as response to behavior of adjacent volcanic highs. These interpretations allied with information on the petroleum system of the basin are important in mapping the prospects for hydrocarbons
Resumo:
The microstructure evolution and mechanical behavior during large strain of a 0.16%C-Mn steel has been investigated by warm torsion tests. These experiments were carried out at 685°C at equivalent strain rate of 0.1 s . The initial microstructure composed of a martensite matrix with uniformly dispersed fine cementite particles was attained by quenching and tempering. The microstructure evolution during tempering and straining was performed through interrupted tests. As the material was reheated to testing temperature, well-defined cell structure was created and subgrains within lath martensite were observed by TEM; strong recovery took place, decreasing the dislocation density. After 1 hour at the test temperature and without straining, EBSD technique showed the formation of new grains. The flow stress curves measured had a peculiar shape: rapid work hardening to a hump, followed by an extensive flow-softening region. 65% of the boundaries observed in the sample strained to ε = 1.0 were high angle grain boundaries. After straining to ε = 5.0, average ferrite grain size close to 1.5 μm was found, suggesting that dynamic recrystallization took place. Also, two sets of cementite particles were observed: large particles aligned with straining direction and smaller particles more uniformly dispersed. The fragmentation or grain subdivision that occurred during reheating and tempering time was essential for the formation of ultrafine grained microstructure.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
The manufacturing process of components of Pressure Vessels has a great importance in the efficiency during the operation and life cycle of the equipment. Taking this into account, the objective of this dissertation was to analyze the methods to determine the strain rate in formed components by measuring the components themselves, and posterior results comparison with the values found in manufacturing standards of Pressure vessels. In this study the whole manufacturing process of a component from a pressure vessel, known as Head or End, was accompanied. Using the methodology obtained from literatures it was possible to execute the relative and logarithmic deformation measurements of these components and compare with the obtained results by means of equations presented in the Standards as AD-Merkblatt and ASME (for pressure vessels). The found results were also compared with the logarithmic methodology, taking into account the deformation of the empirical mesh and the thickness of the components studied. It is possible to conclude from this study that despite the existence of empirical methods of measurement of strain rate in components plastically formed, it is recommended the adoption in all situation of the component manufacturing standard. It can be noticed and explained during the development of this study and through the results found
Resumo:
Nearly all biologic tissues exhibit viscoelastic behavior. This behavior is characterized by hysteresis in the response of the material to load or strain. This information can be utilized in extrapolation of life expectancy of vascular implant materials including native tissues and synthetic materials. This behavior is exhibited in many engineering materials as well such as the polymers PTFE, polyamide, polyethylene, etc. While procedures have been developed for evaluating the engineering polymers the techniques for biologic tissues are not as mature. There are multiple reasons for this. A major one is a cultural divide between the medical and engineering communities. Biomedical engineers are beginning to fill that void. A digitally controlled drivetrain designed to evaluate both elastic and viscoelastic characteristics of biologic tissues has been developed. The initial impetus for the development of this device was to evaluate the potential for human umbilical tissue to serve as a vascular graft material. The consequence is that the load frame is configured for membrane type specimens with rectangular dimensions of no more than 25mm per side. The designed load capacity of the drivetrain is to impose an axial load of 40N on the specimen. This drivetrain is capable of assessing the viscoelastic response of the specimens by four different test modes: stress relaxation, creep, harmonic induced oscillations, and controlled strain rate tests. The fluorocarbon PTFE has mechanical properties commensurate with vascular tissue. In fact, it has been used for vascular grafts in patients who have been victims of various traumas. Hardware and software validation of the device was accomplished by testing PTFE and comparing the results to properties that have been published by both researchers and manufacturers.
Resumo:
The manufacturing process of components of Pressure Vessels has a great importance in the efficiency during the operation and life cycle of the equipment. Taking this into account, the objective of this dissertation was to analyze the methods to determine the strain rate in formed components by measuring the components themselves, and posterior results comparison with the values found in manufacturing standards of Pressure vessels. In this study the whole manufacturing process of a component from a pressure vessel, known as Head or End, was accompanied. Using the methodology obtained from literatures it was possible to execute the relative and logarithmic deformation measurements of these components and compare with the obtained results by means of equations presented in the Standards as AD-Merkblatt and ASME (for pressure vessels). The found results were also compared with the logarithmic methodology, taking into account the deformation of the empirical mesh and the thickness of the components studied. It is possible to conclude from this study that despite the existence of empirical methods of measurement of strain rate in components plastically formed, it is recommended the adoption in all situation of the component manufacturing standard. It can be noticed and explained during the development of this study and through the results found
Resumo:
When a scaled structure (model or replica) is used to predict the response of a full-size compound (prototype), the model geometric dimensions should relate to the corresponding prototype dimensions by a single scaling factor. However, owing to manufacturing technical restrictions, this condition cannot be accomplished for some of the dimensions in real structures. Accordingly, the distorted geometry will not comply with the overall geometric scaling factor, infringing the Pi theorem requirements for complete dynamic similarity. In the present study, a method which takes geometrical distortions into account is introduced, leading to a model similar to the prototype. As a means to infer the performance of this method, three analytical problems of structures subjected to dynamic loads are analysed. It is shown that the replica developed applying this technique is able to accurately predict the full-size structure behaviour even when the studied models have some of their dimensions severely distorted. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work was to develop and validate linear regression models to estimate the production of dry matter by Tanzania grass (Megathyrsus maximus, cultivar Tanzania) as a function of agrometeorological variables. For this purpose, data on the growth of this forage grass from 2000 to 2005, under dry-field conditions in Sao Carlos, SP, Brazil, were correlated to the following climatic parameters: minimum and mean temperatures, degree-days, and potential and actual evapotranspiration. Simple linear regressions were performed between agrometeorological variables (independent) and the dry matter accumulation rate (dependent). The estimates were validated with independent data obtained in Sao Carlos and Piracicaba, SP, Brazil. The best statistical results in the development and validation of the models were obtained with the agrometeorological parameters that consider thermal and water availability effects together, such as actual evapotranspiration, accumulation of degree-days corrected by water availability, and the climatic growth index, based on average temperature, solar radiation, and water availability. These variables can be used in simulations and models to predict the production of Tanzania grass.
Resumo:
This work aimed at evaluating the spray congealing method for the production of microparticles of carbamazepine combined with a polyoxylglyceride carrier. In addition, the influence of the spray congealing conditions on the improvement of drug solubility was investigated using a three-factor, three-level Box-Behnken design. The factors studied were the cooling air flow rate, atomizing pressure, and molten dispersion feed rate. Dependent variables were the yield, solubility, encapsulation efficiency, particle size, water activity, and flow properties. Statistical analysis showed that only the yield was affected by the factors studied. The characteristics of the microparticles were evaluated using X-ray powder diffraction, scanning electron microscopy, differential scanning calorimetry, and hot-stage microscopy. The results showed a spherical morphology and changes in the crystalline state of the drug. The microparticles were obtained with good yields and encapsulation efficiencies, which ranged from 50 to 80% and 99.5 to 112%, respectively. The average size of the microparticles ranged from 17.7 to 39.4 mu m, the water activities were always below 0.5, and flowability was good to moderate. Both the solubility and dissolution rate of carbamazepine from the spray congealed microparticles were remarkably improved. The carbamazepine solubility showed a threefold increase and dissolution profile showed a twofold increase after 60 min compared to the raw drug. The Box-Behnken fractional factorial design proved to be a powerful tool to identify the best conditions for the manufacture of solid dispersion microparticles by spray congealing.
Resumo:
Spark Plasma Sintering (SPS) is a promising rapid consolidation technique that allows a better understanding and manipulating of sintering kinetics and therefore makes it possible to obtain Si3N4-based ceramics with tailored microstructures, consisting of grains with either equiaxed or elongated morphology. The presence of an extra liquid phase is necessary for forming tough interlocking microstructures in Yb/Y-stabilised α-sialon by HP. The liquid is introduced by a new method, namely by increasing the O/N ratio in the general formula RExSi12-(3x+n)Al3x+nOnN16-n while keeping the cation ratios of RE, Si and Al constant. Monophasic α-sialon ceramics with tailored microstructures, consisting of either fine equiaxed or elongated grains, have been obtained by using SPS, whether or not such an extra liquid phase is involved. The three processes, namely densification, phase transformation and grain growth, which usually occur simultaneously during conventional HP consolidation of Si3N4-based ceramics, have been precisely followed and separately investigated in the SPS process. The enhanced densification is attributed to the non-equilibrium nature of the liquid phase formed during heating. The dominating mechanism during densification is the enhanced grain boundary sliding accompanied by diffusion- and/or reaction-controlled processes. The rapid grain growth is ascribed to a dynamic ripening mechanism based on the formation of a liquid phase that is grossly out of equilibrium, which in turn generates an extra chemical driving force for mass transfer. Monophasic α-sialon ceramics with interlocking microstructures exhibit improved damage tolerance. Y/Yb- stabilised monophasic α-sialon ceramics containing approximately 3 vol% liquid with refined interlocking microstructures have excellent thermal-shock resistance, comparable to the best β-sialon ceramics with 20 vol% additional liquid phase prepared by HP. The obtained sialon ceramics with fine-grained microstructure show formidably improved superplasticity in the presence of an electric field. The compressive strain rate reaches the order of 10-2 s-1 at temperatures above 1500oC, that is, two orders of magnitude higher than that has been realised so far by any other conventional approaches. The high deformation rate recorded in this work opens up possibilities for making ceramic components with complex shapes through super-plastic forming.