983 resultados para Storm surges


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the dissolved organic carbon (DOC) exported from catchments is transported during storm events. Accurate assessments of DOC fluxes are essential to understand long-term trends in the transport of DOC from terrestrial to aquatic systems, and also the loss of carbon from peatlands to determine changes in the source/sink status of peatland carbon stores. However, many long-term monitoring programmes collect water samples at a frequency (e.g. weekly/monthly) less than the time period of a typical storm event (typically <1–2 days). As widespread observations in catchments dominated by organo-mineral soils have shown that both concentration and flux of DOC increases during storm events, lower frequency monitoring could result in substantial underestimation of DOC flux as the most dynamic periods of transport are missed. However, our intensive monitoring study in a UK upland peatland catchment showed a contrasting response to these previous studies. Our results showed that (i) DOC concentrations decreased during autumn storm events and showed a poor relationship with flow during other seasons; and that (ii) this decrease in concentrations during autumn storms caused DOC flux estimates based on weekly monitoring data to be over-estimated, rather than under-estimated, because of over rather than under estimation of the flow-weighted mean concentration used in flux calculations. However, as DOC flux is ultimately controlled by discharge volume, and therefore rainfall, and the magnitude of change in discharge was greater than the magnitude of decline in concentrations, DOC flux increased during individual storm events. The implications for long-term DOC trends are therefore contradictory, as increased rainfall could increase flux but cause an overall decrease in DOC concentrations from peatland streams. Care needs to be taken when interpreting long-term trends in DOC flux rather than concentration; as flux is calculated from discharge estimates, and discharge is controlled by rainfall, DOC flux and rainfall/discharge will always be well correlated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The winter climate of Europe and the Mediterranean is dominated by the weather systems of the mid-latitude storm tracks. The behaviour of the storm tracks is highly variable, particularly in the eastern North Atlantic, and has a profound impact on the hydroclimate of the Mediterranean region. A deeper understanding of the storm tracks and the factors that drive them is therefore crucial for interpreting past changes in Mediterranean climate and the civilizations it has supported over the last 12 000 years (broadly the Holocene period). This paper presents a discussion of how changes in climate forcing (e.g. orbital variations, greenhouse gases, ice sheet cover) may have impacted on the ‘basic ingredients’ controlling the mid-latitude storm tracks over the North Atlantic and the Mediterranean on intermillennial time scales. Idealized simulations using the HadAM3 atmospheric general circulation model (GCM) are used to explore the basic processes, while a series of timeslice simulations from a similar atmospheric GCM coupled to a thermodynamic slab ocean (HadSM3) are examined to identify the impact these drivers have on the storm track during the Holocene. The results suggest that the North Atlantic storm track has moved northward and strengthened with time since the Early to Mid-Holocene. In contrast, the Mediterranean storm track may have weakened over the same period. It is, however, emphasized that much remains still to be understood about the evolution of the North Atlantic and Mediterranean storm tracks during the Holocene period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that sea-ice in the Sea of Okhotsk can be affected by local storms; in turn, the resultant sea-ice changes can affect the downstream development of storm tracks in the Pacific and possibly dampen a pre-existing North Atlantic Oscillation (NAO) signal in late winter. In this paper, a storm tracking algorithm was applied to the six hourly horizontal winds from the National Centers for Environmental Prediction (NCEP) reanalysis data from 1978(9) to 2007 and output from the atmospheric general circulation model (AGCM) ECHAM5 forced by sea-ice anomalies in the Sea of Okhotsk. The life cycle response of storms to sea-ice anomalies is investigated using various aspects of storm activity—cyclone genesis, lysis, intensity and track density. Results show that, for enhanced positive sea-ice concentrations in the Sea of Okhotsk, there is a decrease in secondary cyclogenesis, a westward shift in cyclolysis and changes in the subtropical jet are seen in the North Pacific. In the Atlantic, a pattern resembling the negative phase of the NAO is observed. This pattern is confirmed by the AGCM ECHAM5 experiments driven with above normal sea-ice anomalies in the Sea of Okhotsk

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of North Atlantic SST patterns on the storm track is investigated using a hierarchy of GCM simulations using idealized (aquaplanet) and “semirealistic” boundary conditions in the atmospheric component (HadAM3) of the third climate configuration of the Met Office Unified Model (HadCM3). This framework enables the mechanisms determining the tropospheric response to North Atlantic SST patterns to be examined, both in isolation and in combination with continental-scale landmasses and orography. In isolation, a “Gulf Stream” SST pattern acts to strengthen the downstream storm track while a “North Atlantic Drift” SST pattern weakens it. These changes are consistent with changes in the extratropical SST gradient and near-surface baroclinicity, and each storm-track response is associated with a consistent change in the tropospheric jet structure. Locally enhanced near-surface horizontal wind convergence is found over the warm side of strengthened SST gradients associated with ascending air and increased precipitation, consistent with previous studies. When the combined SST pattern is introduced into the semirealistic framework (including the “North American” continent and the “Rocky Mountains”), the results suggest that the topographically generated southwest–northeast tilt in the North Atlantic storm track is enhanced. In particular, the Gulf Stream shifts the storm track south in the western Atlantic whereas the strong high-latitude SST gradient in the northeastern Atlantic enhances the storm track there.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building on studies by Brayshaw et al. (2009, 2011) of the basic ingredients of the North Atlantic storm track (land-sea contrast, orography and SST), this article investigates the impact of Eurasian topography and Pacific SST anomalies on the North Pacific and Atlantic storm tracks through a hierarchy of atmospheric GCM simulations using idealised boundary conditions in the HadGAM1 model. The Himalaya-Tibet mountain complex is found to play a crucial role in shaping the North Pacific storm track. The northward deflection of the westerly flow around northern Tibet generates an extensive pool of very cold air in the north-eastern tip of the Asian continent, which strengthens the meridional temperature gradient and favours baroclinic growth in the western Pacific. The Kuroshio SST front is also instrumental in strengthening the Pacific storm track through its impact on near-surface baroclinicity, while the warm waters around Indonesia tend to weaken it through the impact on baroclinicity of stationary Rossby waves propagating poleward from the convective heating regions. Three mechanisms by which the Atlantic storm track may be affected by changes in the boundary conditions upstream of the Rockies are discussed. In the model configuration used here, stationary Rossby waves emanating from Tibet appear to weaken the North Atlantic storm track substantially, whereas those generated over the cold waters off Peru appear to strengthen it. Changes in eddy-driven surface winds over the Pacific generally appear to modify the flow over the Rocky Mountains, leading to consistent modifications in the Atlantic storm track. The evidence for each of these mechanisms is, however, ultimately equivocal in these simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poleward shift of the mid-latitude storm tracks in response to anthropogenic greenhouse-gas forcing has been diagnosed in climate model simulations1, 2. Explanations of this effect have focused on atmospheric dynamics3, 4, 5, 6, 7. However, in contrast to storm tracks in other regions, the North Atlantic storm track responds by strengthening and extending farther east, in particular on its southern flank8. These adjustments are associated with an intensification and extension of the eddy-driven jet towards western Europe9 and are expected to have considerable societal impacts related to a rise in storminess in Europe10, 11, 12. Here, we apply a regression analysis to an ensemble of coupled climate model simulations to show that the coupling between ocean and atmosphere shapes the distinct storm-track response to greenhouse-gas forcing in the North Atlantic region. In the ensemble of simulations we analyse, at least half of the differences between the storm-track responses of different models are associated with uncertainties in ocean circulation changes. We compare the fully coupled simulations with both the associated slab model simulations and an ocean-forced experiment with one climate model to establish causality. We conclude that uncertainties in the response of the North Atlantic storm track to anthropogenic emissions could be reduced through tighter constraints on the future ocean circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution ensemble simulations (Δx = 1 km) are performed with the Met Office Unified Model for the Boscastle (Cornwall, UK) flash-flooding event of 16 August 2004. Forecast uncertainties arising from imperfections in the forecast model are analysed by comparing the simulation results produced by two types of perturbation strategy. Motivated by the meteorology of the event, one type of perturbation alters relevant physics choices or parameter settings in the model's parametrization schemes. The other type of perturbation is designed to account for representativity error in the boundary-layer parametrization. It makes direct changes to the model state and provides a lower bound against which to judge the spread produced by other uncertainties. The Boscastle has genuine skill at scales of approximately 60 km and an ensemble spread which can be estimated to within ∼ 10% with only eight members. Differences between the model-state perturbation and physics modification strategies are discussed, the former being more important for triggering and the latter for subsequent cell development, including the average internal structure of convective cells. Despite such differences, the spread in rainfall evaluated at skilful scales is shown to be only weakly sensitive to the perturbation strategy. This suggests that relatively simple strategies for treating model uncertainty may be sufficient for practical, convective-scale ensemble forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synoptic evolution and impacts of storm ‘Klaus’ that affected Europe on 23–24 January 2009 are assessed. Klaus was the costliest weather hazard event worldwide during 2009. Peak wind gusts reached 55ms-1 (107kn), accompanied by heavy rain, snow and flooding across Northern Iberia and southern France. Klaus underwent explosive development between the Azores and the Iberian Peninsula at an unusually low latitude. This development was supported by an extended and intense polar jet across the North Atlantic Basin, strong upper-air divergence associated with a second jet streak and an extraordinary export of tropical moisture into the genesis region. Copyright © 2011 Royal Meteorological Society

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A statistical–dynamical regionalization approach is developed to assess possible changes in wind storm impacts. The method is applied to North Rhine-Westphalia (Western Germany) using the FOOT3DK mesoscale model for dynamical downscaling and ECHAM5/OM1 global circulation model climate projections. The method first classifies typical weather developments within the reanalysis period using K-means cluster algorithm. Most historical wind storms are associated with four weather developments (primary storm-clusters). Mesoscale simulations are performed for representative elements for all clusters to derive regional wind climatology. Additionally, 28 historical storms affecting Western Germany are simulated. Empirical functions are estimated to relate wind gust fields and insured losses. Transient ECHAM5/OM1 simulations show an enhanced frequency of primary storm-clusters and storms for 2060–2100 compared to 1960–2000. Accordingly, wind gusts increase over Western Germany, reaching locally +5% for 98th wind gust percentiles (A2-scenario). Consequently, storm losses are expected to increase substantially (+8% for A1B-scenario, +19% for A2-scenario). Regional patterns show larger changes over north-eastern parts of North Rhine-Westphalia than for western parts. For storms with return periods above 20 yr, loss expectations for Germany may increase by a factor of 2. These results document the method's functionality to assess future changes in loss potentials in regional terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A physically based gust parameterisation is added to the atmospheric mesoscale model FOOT3DK to estimate wind gusts associated with storms over West Germany. The gust parameterisation follows the Wind Gust Estimate (WGE) method and its functionality is verified in this study. The method assumes that gusts occurring at the surface are induced by turbulent eddies in the planetary boundary layer, deflecting air parcels from higher levels down to the surface under suitable conditions. Model simulations are performed with horizontal resolutions of 20 km and 5 km. Ten historical storm events of different characteristics and intensities are chosen in order to include a wide range of typical storms affecting Central Europe. All simulated storms occurred between 1990 and 1998. The accuracy of the method is assessed objectively by validating the simulated wind gusts against data from 16 synoptic stations by means of “quality parameters”. Concerning these parameters, the temporal and spatial evolution of the simulated gusts is well reproduced. Simulated values for low altitude stations agree particularly well with the measured gusts. For orographically exposed locations, the gust speeds are partly underestimated. The absolute maximum gusts lie in most cases within the bounding interval given by the WGE method. Focussing on individual storms, the performance of the method is better for intense and large storms than for weaker ones. Particularly for weaker storms, the gusts are typically overestimated. The results for the sample of ten storms document that the method is generally applicable with the mesoscale model FOOT3DK for mid-latitude winter storms, even in areas with complex orography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synoptic evolution and some meteorological impacts of the European winter storm Kyrill that swept across Western, Central, and Eastern Europe between 17 and 19 January 2007 are investigated. The intensity and large storm damage associated with Kyrill is explained based on synoptic and mesoscale environmental storm features, as well as on comparisons to previous storms. Kyrill appeared on weather maps over the US state of Arkansas about four days before it hit Europe. It underwent an explosive intensification over the Western North Atlantic Ocean while crossing a very intense zonal polar jet stream. A superposition of several favourable meteorological conditions west of the British Isles caused a further deepening of the storm when it started to affect Western Europe. Evidence is provided that a favourable alignment of three polar jet streaks and a dry air intrusion over the occlusion and cold fronts were causal factors in maintaining Kyrill's low pressure very far into Eastern Europe. Kyrill, like many other strong European winter storms, was embedded in a pre-existing, anomalously wide, north-south mean sea-level pressure (MSLP) gradient field. In addition to the range of gusts that might be expected from the synoptic-scale pressure field, mesoscale features associated with convective overturning at the cold front are suggested as the likely causes for the extremely damaging peak gusts observed at many lowland stations during the passage of Kyrill's cold front. Compared to other storms, Kyrill was by far not the most intense system in terms of core pressure and circulation anomaly. However, the system moved into a pre-existing strong MSLP gradient located over Central Europe which extended into Eastern Europe. This fact is considered determinant for the anomalously large area affected by Kyrill. Additionally, considerations of windiness in climate change simulations using two state-of-the-art regional climate models driven by ECHAM5 indicate that not only Central, but also Eastern Central Europe may be affected by higher surface wind speeds at the end of the 21st century. These changes are partially associated with the increased pressure gradient over Europe which is identified in the ECHAM5 simulations. Thus, with respect to the area affected, as well as to the synoptic and mesoscale storm features, it is proposed that Kyrill may serve as an interesting study case to assess future storm impacts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Winter storm-track activity over the Northern Hemisphere and its changes in a greenhouse gas scenario (the Special Report on Emission Scenarios A1B forcing) are computed from an ensemble of 23 single runs from 16 coupled global climate models (CGCMs). All models reproduce the general structures of the observed climatological storm-track pattern under present-day forcing conditions. Ensemble mean changes resulting from anthropogenic forcing include an increase of baroclinic wave activity over the eastern North Atlantic, amounting to 5%–8% by the end of the twenty-first century. Enhanced activity is also found over the Asian continent and over the North Pacific near the Aleutian Islands. At high latitudes and over parts of the subtropics, activity is reduced. Variations of the individual models around the ensemble average signal are not small, with a median of the pattern correlation near r = 0.5. There is, however, no evidence for a link between deviations in present-day climatology and deviations with respect to climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synoptic activity over the Northern Hemisphere is evaluated in ensembles of ECHAM5/MPI-OM1 simulations for recent climate conditions (20C) and for three climate scenarios (following SRES A1B, A2, B1). A close agreement is found between the simulations for present day climate and the respective results from reanalysis. Significant changes in the winter mid-tropospheric storm tracks are detected in all three scenario simulations. Ensemble mean climate signals are rather similar, with particularly large activity increases downstream of the Atlantic storm track over Western Europe. The magnitude of this signal is largely dependent on the imposed change in forcing. However, differences between individual ensemble members may be large. With respect to the surface cyclones, the scenario runs produce a reduction in cyclonic track density over the mid-latitudes, even in the areas with increasing mid-tropospheric activity. The largest decrease in track densities occurs at subtropical latitudes, e.g., over the Mediterranean Basin. An increase of cyclone intensities is detected for limited areas (e.g., near Great Britain and Aleutian Isles) for the A1B and A2 experiments. The changes in synoptic activity are associated with alterations of the Northern Hemisphere circulation and background conditions (blocking frequencies, jet stream). The North Atlantic Oscillation index also shows increased values with enhanced forcing. With respect to the effects of changing synoptic activity, the regional change in cyclone intensities is accompanied by alterations of the extreme surface winds, with increasing values over Great Britain, North and Baltic Seas, as well as the areas with vanishing sea ice, and decreases over much of the subtropics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple storm loss model is applied to an ensemble of ECHAM5/MPI-OM1 GCM simulations in order to estimate changes of insured loss potentials over Europe in the 21st century. Losses are computed based on the daily maximum wind speed for each grid point. The calibration of the loss model is performed using wind data from the ERA40-Reanalysis and German loss data. The obtained annual losses for the present climate conditions (20C, three realisations) reproduce the statistical features of the historical insurance loss data for Germany. The climate change experiments correspond to the SRES-Scenarios A1B and A2, and for each of them three realisations are considered. On average, insured loss potentials increase for all analysed European regions at the end of the 21st century. Changes are largest for Germany and France, and lowest for Portugal/Spain. Additionally, the spread between the single realisations is large, ranging e.g. for Germany from −4% to +43% in terms of mean annual loss. Moreover, almost all simulations show an increasing interannual variability of storm damage. This assessment is even more pronounced if no adaptation of building structure to climate change is considered. The increased loss potentials are linked with enhanced values for the high percentiles of surface wind maxima over Western and Central Europe, which in turn are associated with an enhanced number and increased intensity of extreme cyclones over the British Isles and the North Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study focuses on the analysis of winter (October-November-December-January-February-March; ONDJFM) storm events and their changes due to increased anthropogenic greenhouse gas concentrations over Europe. In order to assess uncertainties that are due to model formulation, 4 regional climate models (RCMs) with 5 high resolution experiments, and 4 global general circulation models (GCMs) are considered. Firstly, cyclone systems as synoptic scale processes in winter are investigated, as they are a principal cause of the occurrence of extreme, damage-causing wind speeds. This is achieved by use of an objective cyclone identification and tracking algorithm applied to GCMs. Secondly, changes in extreme near-surface wind speeds are analysed. Based on percentile thresholds, the studied extreme wind speed indices allow a consistent analysis over Europe that takes systematic deviations of the models into account. Relative changes in both intensity and frequency of extreme winds and their related uncertainties are assessed and related to changing patterns of extreme cyclones. A common feature of all investigated GCMs is a reduced track density over central Europe under climate change conditions, if all systems are considered. If only extreme (i.e. the strongest 5%) cyclones are taken into account, an increasing cyclone activity for western parts of central Europe is apparent; however, the climate change signal reveals a reduced spatial coherency when compared to all systems, which exposes partially contrary results. With respect to extreme wind speeds, significant positive changes in intensity and frequency are obtained over at least 3 and 20% of the European domain under study (35–72°N and 15°W–43°E), respectively. Location and extension of the affected areas (up to 60 and 50% of the domain for intensity and frequency, respectively), as well as levels of changes (up to +15 and +200% for intensity and frequency, respectively) are shown to be highly dependent on the driving GCM, whereas differences between RCMs when driven by the same GCM are relatively small.