899 resultados para Stochastic skewness
Resumo:
We provide a survey of some of our recent results ([9], [13], [4], [6], [7]) on the analytical performance modeling of IEEE 802.11 wireless local area networks (WLANs). We first present extensions of the decoupling approach of Bianchi ([1]) to the saturation analysis of IEEE 802.11e networks with multiple traffic classes. We have found that even when analysing WLANs with unsaturated nodes the following state dependent service model works well: when a certain set of nodes is nonempty, their channel attempt behaviour is obtained from the corresponding fixed point analysis of the saturated system. We will present our experiences in using this approximation to model multimedia traffic over an IEEE 802.11e network using the enhanced DCF channel access (EDCA) mechanism. We have found that we can model TCP controlled file transfers, VoIP packet telephony, and streaming video in the IEEE802.11e setting by this simple approximation.
Resumo:
In this paper we propose a nonlinear preprocessor for enhancing the performance of processors used for direction-of-arrival (DOA) estimation in heavy-tailed non-Gaussian noise. The preprocessor based on the phenomenon of suprathreshold stochastic resonance (SSR), provides SNR gain. The preprocessed data is used for DOA estimation by the MUSIC algorithm. Simulation results are presented to show that the SSR preprocessor provides a significant improvement in the performance of MUSIC in heavy-tailed noise at low SNR.
Resumo:
This paper reviews computational reliability, computer algebra, stochastic stability and rotating frame turbulence (RFT) in the context of predicting the blade inplane mode stability, a mode which is at best weakly damped. Computational reliability can be built into routine Floquet analysis involving trim analysis and eigenanalysis, and a highly portable special purpose processor restricted to rotorcraft dynamics analysis is found to be more economical than a multipurpose processor. While the RFT effects are dominant in turbulence modeling, the finding that turbulence stabilizes the inplane mode is based on the assumption that turbulence is white noise.
Resumo:
In this paper, we use reinforcement learning (RL) as a tool to study price dynamics in an electronic retail market consisting of two competing sellers, and price sensitive and lead time sensitive customers. Sellers, offering identical products, compete on price to satisfy stochastically arriving demands (customers), and follow standard inventory control and replenishment policies to manage their inventories. In such a generalized setting, RL techniques have not previously been applied. We consider two representative cases: 1) no information case, were none of the sellers has any information about customer queue levels, inventory levels, or prices at the competitors; and 2) partial information case, where every seller has information about the customer queue levels and inventory levels of the competitors. Sellers employ automated pricing agents, or pricebots, which use RL-based pricing algorithms to reset the prices at random intervals based on factors such as number of back orders, inventory levels, and replenishment lead times, with the objective of maximizing discounted cumulative profit. In the no information case, we show that a seller who uses Q-learning outperforms a seller who uses derivative following (DF). In the partial information case, we model the problem as a Markovian game and use actor-critic based RL to learn dynamic prices. We believe our approach to solving these problems is a new and promising way of setting dynamic prices in multiseller environments with stochastic demands, price sensitive customers, and inventory replenishments.
Resumo:
The probability distribution of the instantaneous incremental yield of an inelastic system is characterized in terms of a conditional probability and average rate of crossing. The detailed yield statistics of a single degree-of-freedom elasto-plastic system under a Gaussian white noise are obtained for both nonstationary and stationary response. The present analysis indicates that the yield damage is sensitive to viscous damping. The spectra of mean and mean square damage rate are presented.
Resumo:
Nevirapine forms the mainstay of our efforts to curtail the pediatric AIDS epidemic through prevention of mother-to-child transmission of HIV-1. A key limitation, however, is the rapid selection of HIV-1 strains resistant to nevirapine following the administration of a single dose. This rapid selection of resistance suggests that nevirapine-resistant strains preexist in HIV-1 patients and may adversely affect outcomes of treatment. The frequencies of nevirapine-resistant strains in vivo, however, remain poorly estimated, possibly because they exist as a minority below current assay detection limits. Here, we employ stochastic simulations and a mathematical model to estimate the frequencies of strains carrying different combinations of the common nevirapine resistance mutations K103N, V106A, Y181C, Y188C, and G190A in chronically infected HIV-1 patients naive to nevirapine. We estimate the relative fitness of mutant strains from an independent analysis of previous competitive growth assays. We predict that single mutants are likely to preexist in patients at frequencies (similar to 0.01% to 0.001%) near or below current assay detection limits (>0.01%), emphasizing the need for more-sensitive assays. The existence of double mutants is subject to large stochastic variations. Triple and higher mutants are predicted not to exist. Our estimates are robust to variations in the recombination rate, cellular superinfection frequency, and the effective population size. Thus, with 10(7) to 10(8) infected cells in HIV-1 patients, even when undetected, nevirapine-resistant genomes may exist in substantial numbers and compromise efforts to prevent mother-to-child transmission of HIV-1, accelerate the failure of subsequent antiretroviral treatments, and facilitate the transmission of drug resistance.
Resumo:
The free vibrational characteristics of a beam-column, which is having randomly varying Young's modulus and mass density and subjected to randomly distributed axial loading is analysed. The material property fluctuations and axial loadings are considered to constitute independent one-dimensional, uni-variate, homogeneous real, spatially distributed stochastic fields. Hamilton's principle is used to formulate the problem using stochastic FEM. Vibration frequencies and mode shapes are analysed for their statistical descriptions. A numerical example is shown.
Resumo:
We study stochastic games with countable state space, compact action spaces, and limiting average payoff. ForN-person games, the existence of an equilibrium in stationary strategies is established under a certain Liapunov stability condition. For two-person zero-sum games, the existence of a value and optimal strategies for both players are established under the same stability condition.
Resumo:
A new finite element method is developed to analyse non-conservative structures with more than one parameter behaving in a stochastic manner. As a generalization, this paper treats the subsequent non-self-adjoint random eigenvalue problem that arises when the material property values of the non-conservative structural system have stochastic fluctuations resulting from manufacturing and measurement errors. The free vibration problems of stochastic Beck's column and stochastic Leipholz column whose Young's modulus and mass density are distributed stochastically are considered. The stochastic finite element method that is developed, is implemented to arrive at a random non-self-adjoint algebraic eigenvalue problem. The stochastic characteristics of eigensolutions are derived in terms of the stochastic material property variations. Numerical examples are given. It is demonstrated that, through this formulation, the finite element discretization need not be dependent on the characteristics of stochastic processes of the fluctuations in material property value.
Resumo:
The set of attainable laws of the joint state-control process of a controlled diffusion is analyzed from a convex analytic viewpoint. Various equivalence relations depending on one-dimensional marginals thereof are defined on this set and the corresponding equivalence classes are studied.
Resumo:
Columns which have stochastically distributed Young's modulus and mass density and are subjected to deterministic periodic axial loadings are considered. The general case of a column supported on a Winkler elastic foundation of random stiffness and also on discrete elastic supports which are also random is considered. Material property fluctuations are modeled as independent one-dimensional univariate homogeneous real random fields in space. In addition to autocorrelation functions or their equivalent power spectral density functions, the input random fields are characterized by scale of fluctuations or variance functions for their second order properties. The foundation stiffness coefficient and the stiffnesses of discrete elastic supports are treated to constitute independent random variables. The system equations of boundary frequencies are obtained using Bolotin's method for deterministic systems. Stochastic FEM is used to obtain the discrete system with random as well as periodic coefficients. Statistical properties of boundary frequencies are derived in terms of input parameter statistics. A complete covariance structure is obtained. The equations developed are illustrated using a numerical example employing a practical correlation structure.
Resumo:
A von Mises truss with stochastically varying material properties is investigated for snapthrough instability. The variability of the snap-through load is calculated analytically as a function of the material property variability represented as a stochastic process. The bounds are established which are independent of the knowledge of the complete description of correlation structure which is seldom possible using the experimental data. Two processes are considered to represent the material property variability and the results are presented graphically. Ein von Mises Fachwerk mit stochastisch verteilten Materialeigenschaften wird bezüglich der Durchschlagsinstabilität untersucht. Die Spannbreite der Durchschlagslast wird analytisch als Funktion der Spannbreite der Materialeigenschaften berechnet, die stochastisch verteilt angenommen werden. Eine explizite Gesamtbeschreibung der Struktur ist bei Benutzung experimenteller Daten selten möglich. Deshalb werden Grenzen für die Durchschlagskraft entwickelt, die von der Kenntnis dieser Gesamtbeschreibung unabhängig sind. Zwei Grenzfälle werden betrachtet, um die Spannbreite der Materialeigenschaften darzustellen. Die Ergebnisse werden grafisch dargestellt.