945 resultados para Steel Structural Systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Distributed digital control systems provide alternatives to conventional, centralised digital control systems. Typically, a modern distributed control system will comprise a multi-processor or network of processors, a communications network, an associated set of sensors and actuators, and the systems and applications software. This thesis addresses the problem of how to design robust decentralised control systems, such as those used to control event-driven, real-time processes in time-critical environments. Emphasis is placed on studying the dynamical behaviour of a system and identifying ways of partitioning the system so that it may be controlled in a distributed manner. A structural partitioning technique is adopted which makes use of natural physical sub-processes in the system, which are then mapped into the software processes to control the system. However, communications are required between the processes because of the disjoint nature of the distributed (i.e. partitioned) state of the physical system. The structural partitioning technique, and recent developments in the theory of potential controllability and observability of a system, are the basis for the design of controllers. In particular, the method is used to derive a decentralised estimate of the state vector for a continuous-time system. The work is also extended to derive a distributed estimate for a discrete-time system. Emphasis is also given to the role of communications in the distributed control of processes and to the partitioning technique necessary to design distributed and decentralised systems with resilient structures. A method is presented for the systematic identification of necessary communications for distributed control. It is also shwon that the structural partitions can be used directly in the design of software fault tolerant concurrent controllers. In particular, the structural partition can be used to identify the boundary of the conversation which can be used to protect a specific part of the system. In addition, for certain classes of system, the partitions can be used to identify processes which may be dynamically reconfigured in the event of a fault. These methods should be of use in the design of robust distributed systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microstructural fracture processes in a BS4360 Grade 50D structural steel with lower sulphur content were studied in smooth tensile specimen tests and Charpy-size bend bar tests. Based on the experimental analysis, an experimental void growth relation with the plastic strain and stress triaxiality and multiplying factor on void growth were determined. Experimental results show that the void growth relation can be reasonably used to estimate the constraint in the specimens containing the notch or crack, also they can be used to evaluate the variations of the stress triaxiality in front of the notch and crack tip under general yielding condition. Side-grooves obviously increase the constraint of the CVN specimens. Strain hardening leads to increasing the stress triaxiality, and decelerating the net void growth. This is especially true for the values of stress triaxiality more than about one. Additionally, the effect of the stress triaxiality on the critical void growth corresponding to the onset of ductile tearing was preliminarily investigated. In this work, a large number of smaller specimens were tested to investigate the ductile-brittle transition behaviour of the structural steel. A void growth rate explanation was suggested for evaluating the temperature transition behaviour. The elastic-plastic fracture tough-ness values based on small specimen tests, such as pre-cracked side-grooved bending specimen and short bar tensile specimen, may give large overestimates of the plane strain fracture toughness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The detrimental effects of a hydrogen atmosphere on the fatigue resistance of BS 4360 steel have been assessed by a comparison of crack growth rates in air and hydrogen at a low cycling frequency (0.1Hz), and at a number of temperature (25, 50 and 80 °C). The crack propagation rates in air are almost independent of temperature over this range, but those measured in hydrogen differ by more than an order of magnitude between 25 and 80 °C. The greatest enhancement is seen at 25 °C and at high values of ΔK, the maximum occurring between 40–45 MPa √m at each temperature. There is little hydrogen contribution to crack growth at values of ΔK below 20 MPa √m for R = 0.1. The enhancement of crack growth rates is reflected by the presence of ‘quasi-cleavage’ facets on the fatigue fracture surfaces of specimens tested in hydrogen. These are most apparent where the greatest increases in growth rate are recorded. The facets show linear markings, which run both parallel and perpendicular to the direction of crack growth. The former are analogous to the ‘river’ lines noted on brittle cleavage facets, and reflect the propagation direction. The latter are more unusual, and indicate that facet formation by hydrogen embrittlement during fatigue is a step-wise process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Development of methods and tools for modeling human reasoning (common sense reasoning) by analogy in intelligent decision support systems is considered. Special attention is drawn to modeling reasoning by structural analogy taking the context into account. The possibility of estimating the obtained analogies taking into account the context is studied. This work was supported by RFBR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study identifies and investigates the potential use of in-eye trigger mechanisms to supplement the widely available information on release of ophthalmic drugs from contact lenses under passive release conditions. Ophthalmic dyes and surrogates have been successfully employed to investigate how these factors can be drawn together to make a successful system. The storage of a drug-containing lens in a pH lower than that of the ocular environment can be used to establish an equilibrium that favours retention of the drug in the lens prior to ocular insertion. Although release under passive conditions does not result in complete dye elution, the use of mechanical agitation techniques which mimic the eyelid blink action in conjunction with ocular tear chemistry promotes further release. In this way differentiation between passive and triggered in vitro release characteristics can be established. Investigation of the role of individual tear proteins revealed significant differences in their ability to alter the equilibrium between matrix-held and eluate-held dye or drug. These individual experiments were then investigated in vivo using ophthalmic dyes. Complete elution was found to be achievable in-eye; this demonstrated the importance of that fraction of the drug retained under passive conditions and the triggering effect of in-eye conditions on the release process. Understanding both the structure-property relationship between drug and material and in-eye trigger mechanisms, using ophthalmic dyes as a surrogate, provides the basis of knowledge necessary to design ocular drug delivery vehicles for in-eye release in a controllable manner.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present numerical investigation offers evidence concerning the validity and objectivity of the predictions of a simple, yet practical, finite element model concerning the responses of steel fibre reinforced concrete structural elements under static monotonic and cyclic loading. Emphasis is focused on realistically describing the fully brittle tensile behaviour of plain concrete and the contribution of steel fibres on the post-cracking behaviour it exhibits. The good correlation exhibited between the numerical predictions and their experimental counterparts reveals that, despite its simplicity, the subject model is capable of providing realistic predictions concerning the response of steel fibre reinforced concrete structural configurations exhibiting both ductile and brittle modes of failure without requiring recalibration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water sorption-induced crystallization, α-relaxations and relaxation times of freeze-dried lactose/whey protein isolate (WPI) systems were studied using dynamic dewpoint isotherms (DDI) method and dielectric analysis (DEA), respectively. The fractional water sorption behavior of lactose/WPI mixtures shown at aw ≤ 0.44 and the critical aw for water sorption-related crystallization (aw(cr)) of lactose were strongly affected by protein content based on DDI data. DEA results showed that the α-relaxation temperatures of amorphous lactose at various relaxation times were affected by the presence of water and WPI. The α-relaxation-derived strength parameter (S) of amorphous lactose decreased with aw up to 0.44 aw but the presence of WPI increased S. The linear relationship for aw(cr) and S for lactose/WPI mixtures was also established with R2 > 0.98. Therefore, DDI offers another structural investigation of water sorption-related crystallization as governed by aw(cr), and S may be used to describe real time effects of structural relaxations in noncrystalline multicomponent solids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the agronomic, morphogenic and structural characteristics of palisadegrass (Urochloa brizantha) in silvopastoral systems (SSP?s) composed of babassu palms (Attalea speciosa) and grass monoculture in the Pre-Amazon region of the state of Maranhão, Brazil. The study followed a completely randomized design, with the arrangement in split plots with six replicates for the evaluation of agronomic characteristics and 30 repetitions for the morphogenic and structural characteristics. The plots were divided into pasture environments with different palm densities (monoculture, 80, 131, 160 palms.ha-¹), and the subplots were divided into the different seasons (rainy and dry).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The convergence between the recent developments in sensing technologies, data science, signal processing and advanced modelling has fostered a new paradigm to the Structural Health Monitoring (SHM) of engineered structures, which is the one based on intelligent sensors, i.e., embedded devices capable of stream processing data and/or performing structural inference in a self-contained and near-sensor manner. To efficiently exploit these intelligent sensor units for full-scale structural assessment, a joint effort is required to deal with instrumental aspects related to signal acquisition, conditioning and digitalization, and those pertaining to data management, data analytics and information sharing. In this framework, the main goal of this Thesis is to tackle the multi-faceted nature of the monitoring process, via a full-scale optimization of the hardware and software resources involved by the {SHM} system. The pursuit of this objective has required the investigation of both: i) transversal aspects common to multiple application domains at different abstraction levels (such as knowledge distillation, networking solutions, microsystem {HW} architectures), and ii) the specificities of the monitoring methodologies (vibrations, guided waves, acoustic emission monitoring). The key tools adopted in the proposed monitoring frameworks belong to the embedded signal processing field: namely, graph signal processing, compressed sensing, ARMA System Identification, digital data communication and TinyML.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this thesis is to use the developments, advantages and applications of "Building Information Modelling" (BIM) with emphasis on the discipline of structural design for steel building located in Perugia. BIM was mainly considered as a new way of planning, constructing and operating buildings or infrastructures. It has been found to offer greater opportunities for increased efficiency, optimization of resources and generally better management throughout the life cycle of a facility. BIM increases the digitalization of processes and offers integrated and collaborative technologies for design, construction and operation. To understand BIM and its benefits, one must consider all phases of a project. Higher initial design costs often lead to lower construction and operation costs. Creating data-rich digital models helps to better predict and coordinate the construction phases and operation of a building. One of the main limitations identified in the implementation of BIM is the lack of knowledge and qualified professionals. Certain disciplines such as structural and mechanical design depend on whether the main contractor, owner, general contractor or architect need to use or apply BIM to their projects. The existence of a supporting or mandatory BIM guideline may then eventually lead to its adoption. To test the potential of the BIM adoption in the steel design process, some models were developed taking advantage of a largely diffuse authoring software (Autodesk Revit), to produce construction drawings and also material schedule that were needed in order to estimate quantities and features of a real steel building. Once the model has been built the whole process has been analyzed and then compared with the traditional design process of steel structure. Many relevant aspect in term of clearness and also in time spent were shown and lead to final conclusions about the benefits from BIM methodology.