992 resultados para Statistical Computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective, statistically robust sampling and surveillance strategies form an integral component of large agricultural industries such as the grains industry. Intensive in-storage sampling is essential for pest detection, Integrated Pest Management (IPM), to determine grain quality and to satisfy importing nation’s biosecurity concerns, while surveillance over broad geographic regions ensures that biosecurity risks can be excluded, monitored, eradicated or contained within an area. In the grains industry, a number of qualitative and quantitative methodologies for surveillance and in-storage sampling have been considered. Primarily, research has focussed on developing statistical methodologies for in storage sampling strategies concentrating on detection of pest insects within a grain bulk, however, the need for effective and statistically defensible surveillance strategies has also been recognised. Interestingly, although surveillance and in storage sampling have typically been considered independently, many techniques and concepts are common between the two fields of research. This review aims to consider the development of statistically based in storage sampling and surveillance strategies and to identify methods that may be useful for both surveillance and in storage sampling. We discuss the utility of new quantitative and qualitative approaches, such as Bayesian statistics, fault trees and more traditional probabilistic methods and show how these methods may be used in both surveillance and in storage sampling systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premature convergence to local optimal solutions is one of the main difficulties when using evolutionary algorithms in real-world optimization problems. To prevent premature convergence and degeneration phenomenon, this paper proposes a new optimization computation approach, human-simulated immune evolutionary algorithm (HSIEA). Considering that the premature convergence problem is due to the lack of diversity in the population, the HSIEA employs the clonal selection principle of artificial immune system theory to preserve the diversity of solutions for the search process. Mathematical descriptions and procedures of the HSIEA are given, and four new evolutionary operators are formulated which are clone, variation, recombination, and selection. Two benchmark optimization functions are investigated to demonstrate the effectiveness of the proposed HSIEA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gross overrepresentation of Indigenous peoples in prison populations suggests that sentencing may be a discriminatory process. Using findings from recent (1991–2011) multivariate statistical sentencing analyses from the United States, Canada, and Australia, we review the 3 key hypotheses advanced as plausible explanations for baseline sentencing discrepancies between Indigenous and non-Indigenous adult criminal defendants: (a) differential involvement, (b) negative discrimination, and (c) positive discrimination. Overall, the prior research shows strong support for the differential involvement thesis and some support for the discrimination theses (positive and negative). We argue that where discrimination is found, it may be explained by the lack of a more complete set of control variables in researchers’ multivariate models and/or differing political and social contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain statistic and scientometric features of articles published in the journal “International Research in Geographical and Environmental Education” are examined in this paper, for the period 1992-2009, by applying nonparametric statistics and Shannon’s entropy (diversity) formula. The main findings of this analysis are: a) after 2004 the research priorities of researchers in geographical and environmental education seem to have changed, b) “teacher education” has been the most recurrent theme throughout these 18 years, followed by “values & attitudes” and “inquiry & problem solving” c) the themes “GIS” and “Sustainability” were the most “stable” throughout the 18 years, meaning that they maintained their ranks as publication priorities more than other themes, d) citations of IRGEE increase annually, e) the average thematic diversity of articles published during the period 1992-2009 is 82.7% of the maximum thematic diversity (very high), meaning that the Journal has the capacity to attract a wide readership for the 10 themes it has successfully covered throughout the 18 years of its publication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Clarence-Moreton Basin (CMB) covers approximately 26000 km2 and is the only sub-basin of the Great Artesian Basin (GAB) in which there is flow to both the south-west and the east, although flow to the south-west is predominant. In many parts of the basin, including catchments of the Bremer, Logan and upper Condamine Rivers in southeast Queensland, the Walloon Coal Measures are under exploration for Coal Seam Gas (CSG). In order to assess spatial variations in groundwater flow and hydrochemistry at a basin-wide scale, a 3D hydrogeological model of the Queensland section of the CMB has been developed using GoCAD modelling software. Prior to any large-scale CSG extraction, it is essential to understand the existing hydrochemical character of the different aquifers and to establish any potential linkage. To effectively use the large amount of water chemistry data existing for assessment of hydrochemical evolution within the different lithostratigraphic units, multivariate statistical techniques were employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer poses an undeniable burden to the health and wellbeing of the Australian community. In a recent report commissioned by the Australian Institute for Health and Welfare(AIHW, 2010), one in every two Australians on average will be diagnosed with cancer by the age of 85, making cancer the second leading cause of death in 2007, preceded only by cardiovascular disease. Despite modest decreases in standardised combined cancer mortality over the past few decades, in part due to increased funding and access to screening programs, cancer remains a significant economic burden. In 2010, all cancers accounted for an estimated 19% of the country's total burden of disease, equating to approximately $3:8 billion in direct health system costs (Cancer Council Australia, 2011). Furthermore, there remains established socio-economic and other demographic inequalities in cancer incidence and survival, for example, by indigenous status and rurality. Therefore, in the interests of the nation's health and economic management, there is an immediate need to devise data-driven strategies to not only understand the socio-economic drivers of cancer but also facilitate the implementation of cost-effective resource allocation for cancer management...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel evolutionary computation approach to three-dimensional path planning for unmanned aerial vehicles (UAVs) with tactical and kinematic constraints. A genetic algorithm (GA) is modified and extended for path planning. Two GAs are seeded at the initial and final positions with a common objective to minimise their distance apart under given UAV constraints. This is accomplished by the synchronous optimisation of subsequent control vectors. The proposed evolutionary computation approach is called synchronous genetic algorithm (SGA). The sequence of control vectors generated by the SGA constitutes to a near-optimal path plan. The resulting path plan exhibits no discontinuity when transitioning from curve to straight trajectories. Experiments and results show that the paths generated by the SGA are within 2% of the optimal solution. Such a path planner when implemented on a hardware accelerator, such as field programmable gate array chips, can be used in the UAV as on-board replanner, as well as in ground station systems for assisting in high precision planning and modelling of mission scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The R statistical environment and language has demonstrated particular strengths for interactive development of statistical algorithms, as well as data modelling and visualisation. Its current implementation has an interpreter at its core which may result in a performance penalty in comparison to directly executing user algorithms in the native machine code of the host CPU. In contrast, the C++ language has no built-in visualisation capabilities, handling of linear algebra or even basic statistical algorithms; however, user programs are converted to high-performance machine code, ahead of execution. A new method avoids possible speed penalties in R by using the Rcpp extension package in conjunction with the Armadillo C++ matrix library. In addition to the inherent performance advantages of compiled code, Armadillo provides an easy-to-use template-based meta-programming framework, allowing the automatic pooling of several linear algebra operations into one, which in turn can lead to further speedups. With the aid of Rcpp and Armadillo, conversion of linear algebra centered algorithms from R to C++ becomes straightforward. The algorithms retains the overall structure as well as readability, all while maintaining a bidirectional link with the host R environment. Empirical timing comparisons of R and C++ implementations of a Kalman filtering algorithm indicate a speedup of several orders of magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selection of optimal camera configurations (camera locations, orientations etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we introduce a statistical formulation of the optimal selection of camera configurations as well as propose a Trans-Dimensional Simulated Annealing (TDSA) algorithm to effectively solve the problem. We compare our approach with a state-of-the-art method based on Binary Integer Programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than 2 alternative heuristics designed to deal with the scalability issue of BIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Security of RFID authentication protocols has received considerable interest recently. However, an important aspect of such protocols that has not received as much attention is the efficiency of their communication. In this paper we investigate the efficiency benefits of pre-computation for time-constrained applications in small to medium RFID networks. We also outline a protocol utilizing this mechanism in order to demonstrate the benefits and drawbacks of using thisapproach. The proposed protocol shows promising results as it is able to offer the security of untraceableprotocols whilst only requiring the time comparable to that of more efficient but traceable protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the accuracy and efficiency tradeoffs between centralized and collective (distributed) algorithms for (i) sampling, and (ii) n-way data analysis techniques in multidimensional stream data, such as Internet chatroom communications. Its contributions are threefold. First, we use the Kolmogorov-Smirnov goodness-of-fit test to show that statistical differences between real data obtained by collective sampling in time dimension from multiple servers and that of obtained from a single server are insignificant. Second, we show using the real data that collective data analysis of 3-way data arrays (users x keywords x time) known as high order tensors is more efficient than centralized algorithms with respect to both space and computational cost. Furthermore, we show that this gain is obtained without loss of accuracy. Third, we examine the sensitivity of collective constructions and analysis of high order data tensors to the choice of server selection and sampling window size. We construct 4-way tensors (users x keywords x time x servers) and analyze them to show the impact of server and window size selections on the results.