896 resultados para State audits and studies
Resumo:
Reaching the strong coupling regime of light-matter interaction has led to an impressive development in fundamental quantum physics and applications to quantum information processing. Latests advances in different quantum technologies, like superconducting circuits or semiconductor quantum wells, show that the ultrastrong coupling regime (USC) can also be achieved, where novel physical phenomena and potential computational benefits have been predicted. Nevertheless, the lack of effective decoupling mechanism in this regime has so far hindered control and measurement processes. Here, we propose a method based on parity symmetry conservation that allows for the generation and reconstruction of arbitrary states in the ultrastrong coupling regime of light-matter interactions. Our protocol requires minimal external resources by making use of the coupling between the USC system and an ancillary two-level quantum system.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): An analytical system was designed and constructed for the rapid and accurate shipboard measurement of anthropogenic chlorofluoromethanes in seawater and in air, using electron capture gas chrometography. The distribution of these compounds in the marine atmosphere and the water column in the Greenland and Norwegian seas were studied during February and March, 1982. The compounds, dissolved in the ocean from the atmosphere, can be used as tracers of subsurface ocean circulation and mixing processes.
Resumo:
Classical high voltage devices fabricated on SOI substrates suffer from a backside coupling effect which could result in premature breakdown. This phenomenon becomes more prominent if the structure is an IGBT which features a p-type injector. To suppress the premature breakdown due to crowding of electro-potential lines within a confined SOI/buried oxide structure, the partial SOI (PSOI) technique is being introduced. This paper analyzes the off-state behavior of an n-type Superjunction (SJ) LIGBT fabricated on PSOI substrate. During the initial development stage the SJ LIGBT was found to have very high leakage. This was attributed to the back and side coupling effects. This paper discusses these effects and shows how this problem could be successfully addressed with minimal modifications of device layout. The off-state performance of the SJ LIGBT at different temperatures is assessed and a comparison to an equivalent LDMOSFET is given. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
The mechanical properties, electronic structure and phonon dispersion of ground state ThO2 as well as the structure behavior up to 240 GPa are studied using first-principles density-functional theory. Our calculated elastic constants indicate that both the ground-state fluorite structure and high pressure cotunnite structure of ThO2 are mechanically stable. The bulk modulus, shear modulus, and Young's modulus of cotunnite ThO2 are all smaller by approximately 25% compared with those of fluorite ThO2. The Poisson's ratios of both structures are approximately equal to 0.3 and the hardness of fluorite ThO2 is 22.4 GPa. The electronic structure and bonding nature of fluorite ThO2 are fully analyzed, and show that the Th-O bond displays a mixed ionic/covalent character. The phase transition from the fluorite to cotunnite structure is calculated to occur at the pressure of 26.5 GPa, consistent with recent experimental measurement by ldiri et al. [1]. For the cotunnite phase it is further predicted that an isostructural transition takes place in the pressure region of 80-130 GPa.
Resumo:
A novel cemented carbides (W0.7Al0.3)C-0.65-Co with different cobalt contents were prepared by solid-state reaction and hot-pressing technique. Hot-pressing technique as a novel technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared with WC-Co. The density, operate cost of the novel material were lower than WC-Co system. The novel materials were easy to process nanoscale sintering and get the rounded particles in the bulk materials. There is almost no eta-phase in the (W0.7Al0.3)C-0.65-Co cemented carbides system although the carbon deficient get the astonished 35% value.
Resumo:
Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.
Resumo:
A new index, i.e., the periphery representation of the projection of a molecule from 3D space to a 2D plane is described. The results, correlation with toxicity of substituted nitrobenzenes, obtained by using periphery descriptors are much better than that obtained by using the areas (i.e., shadows) of projections of the compounds. Even better results were achieved by using the combination of periphery descriptors and the projections areas as well as the indicated variable K reflecting the action of group NO position on the benzene ring.
Resumo:
Hybrid materials incorporating poly(ethylene glycol) (PEG) with tetraethoxysilane (TEOS) via a sol-gel process were studied for a wide range of compositions of PEG by DSC and high resolution solid-state C-13- and Si-29-NMR spectroscopy. The results indicate that the microstructure of the hybrid materials and the crystallization behavior of PEG in hybrids strongly depend on the relative content of PEG. With an increasing content of PEG, the microstructure of hybrid materials changes a lot, from intimate mixing to macrophase separation. It is found that the glass transition temperatures (T-g) (around 373 K) of PEG homogeneously embedded in a silica network are much higher than that (about 223 K) of pure PEG and also much higher in melting temperatures T-m (around 323 K) than PEG crystallites in heterogeneous hybrids. Meanwhile, the lower the PEG content, the more perfect the silica network, and the higher the T-g of PEG embedded in hybrids. An extended-chain structure of PEG was supposed to be responsible for the unusually high T-g of PEG. Homogeneous PEG-TEOS hybrids on a molecular level can be obtained provided that the PEG. content in the hybrids is less than 30% by weight. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Three new lanthanide (Ln)-alkylaluminium (Al) bimetallic complexes with the formula [(mu-CF3CO2)(2)Ln(mu-CF3CHO2)AIR(2) . 2THF](2) (Ln = Nd, Y, R=i-C4H9 (i-Bu); Ln=Eu, R=C2H5(Et); THF=tetrahydrofuran) were synthesized by the reaction of Ln(CF,CO,), (Ln=Nd, Y) with HAI (i-Bu)(2) and of Eu(CF3CO2)(3) with AlEt(3), respectively. Their crystal structures were determined by X-ray diffraction at 233 K. [(mu-CF3CO2)(2)Nd (mu-CF3CHO2)Al(i-Bu)(2) . 2THF](2) (Nd-Al) and [(mu-CF3CO2)(2)Y(mu-CF3CHO2)Al(i-Bu)(2) . 2THF](2) (Y-Al) are isomorphous and crystallize in space group
with a=12.441(3) Angstrom [12.347(5) Angstrom for Y-Al], b=12.832(3) Angstrom [12.832(4) Angstrom], c=11.334(3) Angstrom [11.292(8) Angstrom], alpha=104.93 (2)degrees [104.45(4)degrees], beta=98.47(2)degrees [98.81(4)degrees], gamma=64.60(2)degrees [64.30(3)degrees], R=0.519 [0.113], R(w)=0.0532 [0.110], Z=1 and [(mu-CF3CO2)(2)Eu(CF3CHO2)AlEt(2) . 2THF](2)(Eu-Al) in space group P2(1)/n with a=11.913(6) Angstrom, b=14.051(9) Angstrom, c=17.920(9) Angstrom, alpha=101.88(11)degrees, beta=gamma=90 degrees, R=0.0509, R(w)=0.0471 and Z=2. The six CF3CO2- (including CF3CHO2-) of each complex, among which pairs are equivalent, coordinated to Ln and Al in three patterns: (A) the two oxygen atoms in one of the three CF3CO2- type coordinated to two different Ln; (B) the two oxygen atoms in the second of CF3CO2- type coordinated to Ln and Al, respectively; (C) one of the two oxygen atoms in the third CF3CO2- type bidentately coordinated to two Ln and another oxygen coordinated to Al and one of the two Ln, respectively. Unlike types A and B, in type C the carboxyl carbon with a hydrogen atom bonded to it was found to appear as an sp(3)-hybridized configuration rather than an sp(2)-one. 1D and 2D NMR results further confirmed the existence of such a disproportionated CF3CHO2- ligand. Methyl methacrylate (MMA) and epichlorohydrin (ECH) could be polymerized by Y-Al or Eu-Al as a single-component catalyst and highly syndiotactic poly(MMA) was obtained. THF could also be polymerized by Y-Al in the presence of a small amount of ECH.
Resumo:
The deepening of the studies on essentials of rare earth coordination catalyst brings about more and more reports on model compounds as active centre of the catalyst. Among them the most significant researches are those with identification of the crystal structures of compounds.
Resumo:
This thesis focuses on the synthesis and analysis of novel chloride based platinum complexes derived from iminophosphine and phosphinoamide ligands, along with studies on their reactivity towards substitution and oxidation reactions. Also explored here are the potential applications of these complexes for biological and luminescent purposes. Chapter one provides an extensive overview of platinum coordination chemistry with examples of various mixed donor ligands along with the history of platinum anticancer therapy. It also looks at metals in medicine, both for biological functions as well as for therapeutic purposes and gives a background to some other applications for platinum complexes. Chapter two outlines the design and synthetic strategies employed for the development of novel platinum (II) chloride complexes from iminophosphine and phosphinoamide ligands. Also reported is the cyclometallation of these complexes to form stable tridentate mixed donor platinum (II) compounds. In Chapter three the development of a direct method for displacing a chloride from a platinum metal centre with a desired phosphine is reported. Numerous methods for successful oxidation of the platinum (II) complexes will also be explored, leading to novel platinum (IV) complexes being reported here also. The importance of stabilisation of the displaced anion, chloride, by the solvent system will also be discussed in this chapter. Chapter four investigates the reactivity of the platinum (II) complexes towards two different biomolecules to form novel platinum bio-adducts. The potential application of the platinum (II) cyclometallates as chemotherapeutics will also be explored here using in-vitro cancer cell testing. Finally, luminescence studies are also reported here for the ligands and platinum complexes reported in chapter two and three to investigate potential applications in this field also. Chapter five provides a final conclusion and an overall summary of the entire project as well as identifying key areas for future work.